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Release Notes for version 3.5  

Changes in version 3.5 with respect to 3.3 

 New functionality: 

1. The graphical user interface of Xfuzzy now shows the specifications by 

means of drop-down structures, so that it is possible to select the complete 

system or any of its rule bases as the active specification on which the 
different tools will act. 

2. The time series prediction tool, xftsp, has been integrated into the 

environment, and can be accessed through the Tuning menu of the Xfuzzy's 
main window. 

3. A Save Image option, which allows to save the graphic representation in a 
JPEG file, has been added in the File menu of xfplot. 

4. The hardware synthesis tool xfvhdl has been updated to generate synthesis 
files for Xilinx's ISE and Vivado FPGA design environments. 

5. All tools in the Xfuzzy environment can be invoked from the command line.  

 Documentation and teaching material: 

1. The Xfuzzy documentation has been updated and completed, so that it 
describes the functionality of all the tools that make up the environment.  

2. As part of the distribution of Xfuzzy, examples have been included 

illustrating the use of the different facilities in the environment 

independently (Tools), as well as in combination with other IT tools for the 
development of different applications (Apps). 

3. In the Xfuzzy website there is also a series of tutorials that detail the use of 

the hardware tools provided by the environment to apply different 
methodologies for the development of fuzzy controllers on Xilinx FPGAs. 

 Fixed bugs: 

1. The language of the system windows used to locate files and directories has 

been unified, so that all the legends appear in English.  

2. Fixed a bug that prevented editing function packages with the xfpkg tool. 

3. Several errors in the execution of certain identification algorithms used by 
the xfdm tool have been debugged. 

4. The configuration directives for xftsp tool that had no use have been 

removed. 

5. Fixed an error that presented the xfsim tool when loading the model of the 
plant due to problems with the search path of the file. 

6. The c ++ code generated by the xfcpp tool has been modified to make it 

compatible with gcc compilers available in different Linux distributions and 
with Windows Visual Studio compiler. 
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Changes in version 3.3 with respect to 3.0 
 

  Two new hardware synthesis tools have been included into the environment:  

1. Xfvhdl translates the specification of a fuzzy system written in XFL3 into a 

VHDL description that can be synthesized and implemented on a 
programmable device or an application specific integrated circuit.  

Compared to previous releases of hardware synthesis tools included in 
Xfuzzy, the major novelties of the new version of xfvhdl are:  

o It allows direct implementation of hierarchical fuzzy systems. 

o An improved functionality in many components of the VHDL library has 

been included in this new version. The arithmetic circuits have been 

modified to generate the saturation regions for membership functions 

shapes of type "Z" and "S". A new block that implements the first-order 

Takagi-Sugeno defuzzification method has been introduced. The library 

also contains a set of new crisp blocks that implement general purpose 

arithmetic (addition, subtraction, multiplication or division functions) and 
logic operations (selector). 

o VHDL descriptions of library components have been parameterized by 
"generic" VHDL statements to facilitate the design process automation. 

o An improved graphical interface has been developed to include the new 
functionality of the tool. 

2. Xfsg translates the XFL3 specification of a fuzzy system into a Simulink 

model that includes components of the XfuzzyLib library. In combination 

with FPGA implementation tools from Xilinx and simulation facilities from 

Matlab, this tool provides a powerful design environment for synthesis of 

fuzzy inference systems on Xilinx's FPGAs. 

 

Changes in version 3.0 with respect to 2.X 

1. The environment has been completely reprogrammed using Java.  

2. A new specification language, called XFL3, has been defined. Some of the 

improvements with respect to XFL are the following:  

1. A new kind of object, called operator set, has been incorporated to 

assign different functions to the fuzzy operators.  

2. Linguistic hedges, which describe more complex relationships among 

the linguistic variables has also been included.  

3. User can now extends not only the functions assigned to fuzzy 

connectives and defuzzification methods, but also membership 

functions and linguistic hedges.  

3. The edition tool can now define hierarchical rule bases.  

4. The 2-D and 3-D representation tools do not require gnuplot.  

5. A new monitor tool has been added to study the system behavior.  

6. The learning tool includes many new learning algorithms.  
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Known bugs in version 3.0 

1. (xfedit) Membership functions edition sometimes provokes the error "Label 

already exists".  

2. (xfedit) Rulebases edition produces an error upon applying the modifications 

twice. 

3. (xfedit, xfmt) The hierarchical structure of the system is not drawn correctly 

when an internal variable is used both as input to the rulebase and as output 

variable 

4. (xfsim) The end conditions upon the system input variables are not correctly 

verified. 

5. (tools) The command-mode execution of the different tools does not admit 

absolute path to identify files. 

6. (XFL3) The "definedfor" clause is not verified by the defuzzification 

methods". 

7. (xfcpp) Some compilers do not admit that the methods of the class 

Operatorset be called "and", "or" or "not". 

8. (xfsl) The clustering process may generate new membership functions 

whose parameters do not comply with the restrictions due to rounding 

errors.  

9. (tools) Sometimes some windows of the tools are not drawn correctly and it 

is necessary to modify the size of these windows to force a correct 

representation. 
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Installation of Xfuzzy 3.5 

System requirements:  

Xfuzzy 3.3 can be executed on platforms containing the Java Runtime Environment. For 
defining new function packages, a Java Compiler is also needed. The Java Software 
Development Kit, including JRE, compiler and many other tools can be found at 
http://www.oracle.com/technetwork/java/.  

Installation guide:  

 Download the XfuzzyInstall.jar file.  

 Execute this file. When using MS-Windows this is just to click on the file icon. In general 
this file can be executed with the command "java -jar XfuzzyInstall.jar". This will open the 
following window: 

 

 Choose a folder to install Xfuzzy. If this directory does not exist, it will be created in the 
installation process.  

 Choose the folder of java executables (java, javac, jar, etc.). This is usually the "/bin" 
subfolder of the Java installation folder. 

 Choose a browser to show help files.  

 Click on the Install button. This will uncompress the Xfuzzy distribution on the selected 
base folder.  

 Xfuzzy executables are located in the "/bin" folder.  

 The executable files are script programs. Do not change the location of the Xfuzzy 
distribution, otherwise these script files will not work.   

http://www.oracle.com/technetwork/java/
file:///C:/workspace/Xfuzzy/dist-src/doc/download.html%23DISTRIBUTION
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An Overview of Xfuzzy 3  

Xfuzzy 3 is a development environment for fuzzy-inference-based systems. It is composed of 
several tools that cover the different stages of the fuzzy system design process, from their 
initial description to the final implementation. Its main features are the capability for 
developing complex systems and the flexibility of allowing the user to extend the set of 
available functions. The environment has been completely programmed in Java, so it can be 
executed on any platform with JRE (Java Runtime Environment) installed. The next figure 
shows the design flow of Xfuzzy 3.  

 

The description stage includes graphical tools for the fuzzy system definition. The verification 
stage is composed of tools for simulation, monitoring and representing graphically the system 
behavior. The tuning stage consists in applying identification, learning and simplification 
algorithms. Finally, the synthesis stage is divided into tools generating high-level languages 
descriptions for software or hardware implementations.   

The nexus between all these tools is the use of a common specification language, XFL3, which 
extends the capabilities of XFL, the language defined in version 2.0. XFL3 is a flexible and 
powerful language, which allows to express very complex relations between the fuzzy 
variables, by means of hierarchical rule bases and user-defined fuzzy connectives, linguistic 
hedges, membership functions and defuzzification methods.  

Every tool can be executed as an independent program. The environment integrates all of 
them under a graphical user interface which eases the design process.  

 



   TOC

 9  

XFL3: The Xfuzzy 3 specification language 

 XFL3: The Xfuzzy 3 specification language 
o Conjunto de operadores  
o Tipos de variables lingüísticas  
o Bases de reglas 
o Bloques no difusos 
o Comportamiento global del sistema  
o Paquetes de funciones  

 Definición de funciones binarias 
 Definición de funciones unarias 
 Definición de funciones no difusas 
 Definición de funciones de pertenencia 
 Definición de familias de funciones de pertenencia  
 Definición de métodos de defuzzificación 
 El paquete estándar xfl 

Formal languages are usually defined for the specification of fuzzy systems because of its 
several advantages. However, two objectives may conflict. A generic and high expressive 
language, able to apply all the fuzzy logic-based formalisms, is desired, but, at the same time, 
the (possible) constraints of the final system implementation have to be considered. In this 
sense, some languages focus on expressiveness, while others are focused on software or 
hardware implementations.  

One of our main objectives when we began to develop a fuzzy system design environment was 
to obtain an open environment that was not constrained by the implementation details, but 
offered the user a wide set of tools allowing different implementations from a general system 
description. This led us to the definition of the formal language XFL. The main features of XFL 
were the separation of the system structure definition from the definition of the functions 
assigned to the fuzzy operators, and the capabilities for defining complex systems. XFL is the 
base for several hardware- and software-oriented development tools that constitute the 
Xfuzzy 2.0 design environment.  

As a starting point for the third version of Xfuzzy, a new language, XFL3, which extends the 
advantages of XFL, has been defined. XFL3 allows the user to define new membership 
functions and parametric operators, and admits the use of linguistic hedges that permit to 
describe more complex relationships among variables. In order to incorporate these 
improvements, some modifications have been made in the XFL syntax. In addition, the new 
language XFL3, together with the tools based on it, employ Java as programming language. 
This means the use of an advantageous object-oriented methodology and the flexibility of 
executing the new version of Xfuzzy in any platform with JRE (Java Runtime Environment) 
installed.  

XFL3 divides the description of a fuzzy system into two parts: the logical definition of the 
system structure, which is included in files with extension ".xfl", and the mathematical 
definition of the fuzzy functions, which are included in files with extension ".pkg" (packages).  

The language allows the definition of complex systems. It does not limit the number of 
linguistic variables, membership functions, fuzzy rules, etc. Systems can be defined by 
hierarchical modules (including rule bases and crisp blocks), and fuzzy rules can express 
complex relationships among the linguistic variables by using connectives AND and OR, and 
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linguistic hedges like greater than, smaller than, not equal to, etc. XFL3 allows the user to 
define its own fuzzy functions by means of packages. These new functions can be used as 
membership functions, families of membership functions, fuzzy connectives, linguistic hedges, 
crisp blocks and defuzzification methods. The standard package xfl contains the most usual 
functions.  

The description of a fuzzy system structure, included in ".xfl" files, employs a formal syntax 
based on 8 reserved words: operatorset, type, extends, rulebase, using, if, crisp and system. An 
XFL3 specification consists of several objects defining operator sets, variable types, rule bases, 
crisp blocks and the description of the system global behavior. An operator set describes the 
selection of the functions assigned to the different fuzzy operators. A variable type contains 
the definition of the universe of discourse, linguistic labels and membership functions related 
to a linguistic variable. A rule base defines the logical relationship among the linguistic 
variables. A crisp block describes a mathematical operation on the system variables, and, 
finally, the system global behavior includes the description of the modular hierarchy. 

 

Operator sets 

An operator set in XFL3 is an object containing the mathematical functions that are assigned to 
each fuzzy operator. Fuzzy operators can be binary (like the T-norms and S-norms employed to 
represent linguistic variable connections, implication, or rule aggregations), unary (like the C-
norms or the operators related with linguistic hedges), or can be associated with 
defuzzification methods.  

XFL3 defines the operator sets with the following format:  

operatorset identifier { 

   operator assigned_function(parameter_list); 

   operator assigned_function(parameter_list); 

   ........... } 

It is not required to specify all the operators. When one of them is not defined, its default 
function is assumed. The following table shows the operators (and their default functions) 
currently used in XFL3.  

Operador  Tipo  Función por defecto  

and  binary  min(a,b)  

or  binary  max(a,b)  

implication, imp  binary  min(a,b)  

also  binary  max(a,b)  

not  unary  (1-a) 

very, strongly  unary  a^2 

moreorless  unary  (a)^(1/2) 

slightly  unary  4*a*(1-a) 

defuzzification, defuz  defuzzification  center of area 
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The assigned functions are defined in external files which we name as packages. The format to 
identify a function is "package.function".  

 operatorset systemop { 

  and xfl.min(); 

  or xfl.max(); 

  imp xfl.min(); 

  strongly xfl.pow(3); 

  moreorless xfl.pow(0.4); 

 } 

 

 

  

Types of linguistic variables 

An XFL3 type is an object that describes a type of linguistic variable. This means to define its 
universe of discourse, to name the linguistic labels covering that universe, and to specify the 
membership function associated to each label. The definition format of a type is as follows:  

type identifier [min, max; card] { 

    family_id [] membership_function_family(parameter_list); 

    ............. 

    label membership_function(parameter_list); 

    ............. 

    label family_id [ index ]; 

    ............. } 

where min and max are the limits of the universe of discourse and card (cardinality) is the 
number of its discrete elements. If cardinality is not specified, its default value (currently, 256) 
is assumed. When limits are not explicitly defined, the universe of discourse is taken from 0 to 
1.  

Linguistic labels can be defined in two ways: free membership functions or members of a 
family of membership functions. In the last case, the family of membership functions must be 
previously defined. A free membership function uses its own set of parameters while the 
members of a family share the list of parameters of that family. This is useful to reduce the 
number of parameters and to represent constraints between the linguistic labels (such as the 
order or a fixed overlapping degree).  

The format of the membership_function and the membership_function_family identifiers is 
similar to the operator identifier, that is, "package.function". On the other hand, a member of 
a family of membership functions is identified by its index (being 0 the first one).  

XFL3 supports inheritance mechanisms in the type definitions (like its precursor, XFL). To 
express inheritance, the heading of the definition is as follows 

type identifier extends identifier { 

The types so defined inherit automatically the universe of discourse and the labels of their 
parents. The labels defined in the body of the type are either added to the parent labels or 
overwrite them if they have the same name.  
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 type Tinput1 [-90,90] { 

    NM xfl.trapezoid(-100,-90,-40,-30); 

    NP xfl.trapezoid(-40,-30,-10,0); 

    CE xfl.triangle(-10,0,10); 

    PP xfl.trapezoid(0,10,30,40); 

    PM xfl.trapezoid(30,40,90,100); 

   }   

 type Tinput2 extends Tinput1 { 

    NG xfl.trapezoid(-100,-90,-70,-60); 

    NM xfl.trapezoid(-70,-60,-40,-30); 

    PM xfl.trapezoid(30,40,60,70); 

    PG xfl.trapezoid(60,70,90,100); 

   }  
 

 type Tinput3 [-90,90] { 

    fam[] xfl.triangular(-60,-

30,0,30,60); 

    NG fam[0]; 

    NM fam[1]; 

    NP fam[2]; 

    CE fam[3]; 

    PP fam[4]; 

    PM fam[5]; 

    PG fam[6]; 

   }  

 

 
 

 
Rule bases 

A rule base in XFL3 is an object containing the rules that define the logic relationships among 
the linguistic variables. Its definition format is as follows:  

rulebase identifier (input_list : output_list) using operatorset { 

  [factor] if (antecedent) -> consecuent_list; 

  [factor] if (antecedent) -> consecuent_list; 

  ............. } 

The definition format of the input and output variables is "type identifier", where type refers to 
one of the linguistic variable types previously defined. The operator set selection is optional, so 
that when it is not explicitly defined, the default operators are employed. Confidence weights 
or factors (with default values of 1) can be applied to the rules.  

A rule antecedent describes the relationships among the input variables. XFL3 allows to 
express complex antecedents by combining basic propositions with connectives or linguistic 
hedges. On the other side, each rule consequent describes the assignation of a linguistic 
variable to an output variable as "variable = label".  

A basic proposition relates an input variable with one of its linguistic labels. XFL3 admits 
several relationships, such as equality, inequality and several linguistic hedges. The following 
table shows the different relationships offered by XFL3.  

 



   TOC

 13  

Basic propositions Description Representation 

variable == label  equal to  

 

variable >= label  equal or greater than  

 

variable <= label  equal or smaller than  

 

variable > label  greater than  

 

variable < label  smaller than  

 

variable != label  not equal to  

 

variable %= label  slightly equal to  

 

variable ~= label  moreorless equal to  

 

variable += label  strongly equal to  

 

In general, a rule antecedent is formed by a complex proposition. Complex propositions are 
composed of basic propositions, connected by fuzzy connectives and linguistic hedges. The 
following table shows how to generate complex propositions in XFL3.  

Complex propositions Description 

proposition & proposition  and operator  

proposition | proposition  or operator  

!proposition  not operator  

%proposition  slightly operator  

~proposition  moreorless operator  

+proposition  strongly operator  

This is an example of a rule base composed of some rules which include complex propositions.  
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 rulebase base1(input1 x, input2 y : output z) using systemop { 

  if( x == medium & y == medium) -> z = tall; 

  [0.8] if( x <=short | y != very_tall ) -> z = short; 

  if( +(x > tall) & (y ~= medium) ) -> z = tall; 

  ............. }  

 

 

Crisp blocks 

A crisp block is a module which describes a non-fuzzy operation among some variables. In 
general, they use to be single operation such as sum, difference, product, etc. This kind of 
mathematical operations are commonly found in real problems where system variables needs 
to be combined in some way to adapt them to be used by a rulebase or to generate the output 
values of the system.  

Crisp block definitions are encapsulated into a XFL3 object called crisp. Only one object crisp 
may appear in a system specification. The definition format of the object crisp in XFL3 is as 
follows: 

  

 

The format of the crisp_function identifier is similar to the operator identifier, that is, 
"package.function" or simply "function" if the package which contains the definition of the 
crisp function has been already imported: 

  crisp { 

   difference xfl.diff2(); 

   summation xfl.addN(3); 

  } 

 

 

System global behavior 

The description of the system global behavior means to define the global input and output 
variables of the system as well as the modular hierarchy. This description is as follows in XFL3:  

 

 

The definition format of the global input and output variables is the same format employed in 
the definition of the rule bases. The inner variables that may appear establish serial or parallel 
interconnections among the modules. Inner variables must firstly appear as output variables of 
a module before being employed as input variables of other modules. Modules can refer to 
rule bases or to crisp blocks.  

crisp { 

   identifier crisp_function(parameter_list); 

   identifier crisp_function(parameter_list); 

   ............. } 

system (input_list : output_list) { 

 rule_base_identifier(inputs : outputs); 

 rule_base_identifier(inputs : outputs); 

............. }  
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system (Type1 x, Type2 y : Type3 z) { 

    rulebase1( x, y : inner1); 

    rulebase2( x, y : inner2); 

    rulebase3(inner1, inner2 : z); 

  }  

 

 

Function packages 

A great advantage of XFL3 is that functions assigned to fuzzy operators can be defined freely 
by the user in external files (named as packages), which gives a huge flexibility to the 
environment. Each package can include an unlimited number of definitions.  

Six types of functions can be defined in XFL3: binary functions that can be used as T-norms, S-
norms, and implication functions; unary functions that are related with linguistic hedges; crisp 
functions that implement crisp blocks; membership functions that are used to describe 
linguistic labels; families of membership functions that define a set of membership functions 
which share their parameters; and defuzzification methods.  

A function definition include its name (and possible alias), the parameters that specify its 
behavior as well as the constraints on these parameters, the description of its behavior in the 
different languages to which it could be compiled (C, C++ and Java), and even the description 
of its differential function (if it is employed in gradient-based learning mechanisms). This 
information is the basis to generate automatically a Java class that incorporates all the 
function capabilities and can be employed by any XFL3 specification.  

Definición de funciones binarias 

Binary functions can be assigned to the conjunction operator (and), the disjunction operator 
(or), the implication function (imp), and the rule aggregation operator (also). The structure of a 
binary function definition in a function package is as follows:  

  binary identifier { blocks }                  

The blocks that can appear in a binary function definition are alias, parameter, requires, java, 
ansi_c, cplusplus, derivative and source.  

The block alias is used to define alternative names to identify the function. Any of these 
identifiers can be used to refer the function. The syntax of the block alias is:  

  alias identifier, identifier, ... ;                     

The block parameter allows the definition of those parameters which the function depends on. 
The last identifier can be followed by brackets to define a list of parameters. Its format is:  

  parameter identifier, identifier, ... ;                  
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The block requires expresses the constraints on the parameter values by means of a Java 
Boolean expression that validates the parameter values. The structure of this block is:  

  requires { expression }                                   

The blocks java, ansi_c and cplusplus describe the function behavior by means of its 
description as a function body in Java, C and C++ programming languages, respectively. Input 
variables for these functions are 'a' and 'b'. The format of these blocks is the following:  

  java { Java_function_body } 

  ansi_c { C_function_body } 

  cplusplus { C++_function_body }                                      

The block derivative describes the derivative function with respect to the input variables 'a' 
and 'b'. This description consists of a Java assignation expression to the variable 'deriv[]'. The 
derivative function with respect to the input variable 'a' must be assigned to 'deriv[0]', while 
the derivative function with respect to the input variable 'b' must be assigned to 'deriv[1]'. The 
description of the derivative function allows to propagate the system error derivative used by 
the supervised learning algorithms based on gradient descent. The format is:  

  derivative { Java_expressions }                              

The block source is used to define Java code that is directly included in the class code 
generated for the function definition. This code allows to define local methods that can be 
used into other blocks. The structure is:  

  source { Java_code }                                          

The following example shows the definition of the T-norm minimum, also used as Mamdani's 
implication function.   

binary min { 

 alias mamdani; 

 java { return (a<b? a : b); } 

 ansi_c { return (a<b? a : b); } 

 cplusplus { return (a<b? a : b); } 

 derivative { 

  deriv[0] = (a<b? 1: (a==b? 0.5 : 0)); 

  deriv[1] = (a>b? 1: (a==b? 0.5 : 0)); 

 } 

} 

 

Unary function definition 

Unary functions are used to describe the linguistic hedges. These functions can be assigned to 
the not modifier, the very or strongly modifier, the more-or-less modifier, and the slightly 
modifier. The structure of a unary function definition in a function package is as follows:  

  unary identifier { blocks }                      

The blocks that can appear in a unary function definition are alias, parameter, requires, java, 
ansi_c, cplusplus, derivative and source.  
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The block alias is used to define alternative names to identify the function. Any of these 
identifiers can be used to refer the function. The syntax of the block alias is:  

  alias identifier, identifier, ... ;                     

The block parameter allows the definition of those parameters which the function depends on. 
The last identifier can be followed by brackets to define a list of parameters. Its format is:  

  parameter identifier, identifier, ... ;                     

The block requires expresses the constraints on the parameter values by means of a Java 
Boolean expression that validates the parameter values. The structure of this block is:  

  requires { expression }                      

The blocks java, ansi_c and cplusplus describe the function behavior by means of its 
description as a function body in Java, C and C++ programming languages, respectively. Input 
variable for these functions is 'a'. The format of these blocks is the following:  

  java { Java_function_body } 

  ansi_c { C_function_body } 

  cplusplus { C++_function_body }                    

The block derivative describes the derivative function with respect to the input variable 'a'. 
This description consists of a Java assignation expression to the variable 'deriv'. The description 
of the derivative function allows to propagate the system error derivative used by the 
supervised learning algorithms based on gradient descent. The format is:  

  derivative { Java_expressions }                   

The block source is used to define Java code that is directly included in the class code 
generated for the function definition. This code allows to define local methods that can be 
used into other blocks. The structure is:  

  source { Java_code }                     

The following example shows the definition of the Yager C-norm, which depends on the 
parameter w.  

 unary yager { 

  parameter w; 

  requires { w>0 } 

  java { return Math.pow( ( 1 - Math.pow(a,w) ) , 1/w ); } 

  ansi_c { return pow( ( 1 - pow(a,w) ) , 1/w ); } 

  cplusplus { return pow( ( 1 - pow(a,w) ) , 1/w ); } 

  derivative { deriv = - Math.pow( Math.pow(a,-w) -1, (1-w)/w ); } 

 }  
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Crisp function definition 

Crisp functions are used to describe mathematical operations among variables with non-fuzzy 
values. These functions can be assigned to crisp modules which can be included in the modular 
hierarchy of fuzzy systems. The structure of a crisp function definition in a function package is 
as follows:  
  crisp identifier { blocks }                      

The blocks that can appear in a crisp function definition are alias, parameter, requires, inputs, 
java, ansi_c, cplusplus and source.  

The block alias is used to define alternative names to identify the function. Any of these 
identifiers can be used to refer the function. The syntax of the block alias is:  

  alias identifier, identifier, ... ;                     

The block parameter allows the definition of those parameters which the function depends on. 
The last identifier can be followed by brackets to define a list of parameters. Its format is:  

  parameter identifier, identifier, ..., identifier[] ;                     

The block requires expresses the constraints on the parameter values by means of a Java 
Boolean expression that validates the parameter values. The structure of this block is:  

  requires { expression }                      

The block inputs defines the number of input variables of the crisp function by means of a Java 
expresion which must return an integer value. The syntax of this block is:  

  inputs { Java_function_body }                      

The blocks java, ansi_c and cplusplus describe the function behavior by means of its 
description as a function body in Java, C and C++ programming languages, respectively. The 
variable 'x[]' contains the values of the input variables. The format of these blocks is the 
following:  

  java { Java_function_body }  

  ansi_c { C_function_body }  

  cplusplus { C++_function_body }  

The block source is used to define Java code that is directly included in the class code 
generated for the function definition. This code allows to define local methods that can be 
used into other blocks. The structure is:  

  source { Java_code }                     

The following example shows the definition of a crisp function which sums N input 

values.  
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 crisp addN { 

    parameter N; 

    requires { N>0 } 

    inputs { return (int) N; } 

    java {  

     double a = 0; 

     for(int i=0; i<N; i++) a+=x[i]; 

     return a; 

    } 

    ansi_c {  

     int i; 

     double a = 0; 

     for(i=0; i<N; i++) a+=x[i]; 

     return a; 

    } 

    cplusplus {  

     double a = 0; 

     for(int i=0; i<N; i++) a+=x[i]; 

     return a; 

    } 

   }  

 

 

Membership function definition 

The membership functions are assigned to the linguistic labels that form a linguistic variable 
type. The structure of a membership function definition in a function package is as follows:  

  mf identifier { blocks }                     

The blocks that can appear in a membership function definition are alias, parameter, requires, 
java, ansi_c, cplusplus, derivative, update and source.  

The block alias is used to define alternative names to identify the function. Any of these 
identifiers can be used to refer the function. The syntax of the block alias is:  

  alias identifier, identifier, ... ;                    

The block parameter allows the definition of those parameters which the function depends on. 
The last identifier can be followed by brackets to define a list of parameters. Its format is:  

  parameter identifier, identifier, ..., identifier[] ;                    

The block requires expresses the constraints on the parameter values by means of a Java 
Boolean expression that validates the parameter values. This expression can also use the 
values of the variables 'min' and 'max', which represent the minimum and maximum values in 
the universe of discourse of the linguistic variable considered. The structure of this block is:  

  requires { expression }                     

The blocks java, ansi_c and cplusplus describe the function behavior by means of its 
description as a function body in Java, C and C++ programming languages, respectively. The 
format of these blocks is the following:  
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  java { Java_function_body }  

  ansi_c { C_function_body }  

  cplusplus { C++_function_body }  

The definition of a membership function includes not only the description of the function 
behavior itself, but also the function behavior under the greater-or-equal and smaller-or-equal 
modifications, and the computation of the center and basis values of the membership 
function. As a consequence, the blocks java, ansi_c and cplusplus are divided into the following 
subblocks:  

  equal { code } 

  greatereq { code } 

  smallereq { code } 

  center { code } 

  basis { code }    

The subblock equal describes the function behavior. The subblocks greatereq and smallereq 
describe the greater-or-equal and smaller-or-equal modifications, respectively. The input 
variable in these subblocks is called 'x', and the code can use the values of the function 
parameters and the variables 'min' and 'max', which represent the minimum and maximum 
values of the universe of discourse of the function. The subblocks greatereq and smallereq can 
be omitted. In that case, these transformations are computed by sweeping all the values of the 
universe of discourse. However, it is much more efficient to use an analytical function, so that 
the definition of these subblocks is strongly recommended.  

The subblocks center and basis describe the center and basis of the membership function. The 
code of these subblocks can use the values of the function parameters and the variables 'min' 
and 'max'. This information is used by several simplified defuzzification methods. These 
subblocks are optional and their default functions return a zero value.  

The block derivative describes the derivative function with respect to each function parameter. 
This block is also divided into the subblocks equal, greatereq, smallereq, center and basis. The 
code of these subblocks consists of Java expressions assigning values to the variable 'deriv[]'. 
The value of 'deriv[i]' represents the derivative of each function with respect to the i-th 
parameter of the membership function. The description of the derivative function allows to 
compute the system error derivative used by gradient descent-based learning algorithms. The 
format is:  

  derivative { subblocks }                        

The block update is used to compute a valid set of parameter values (stored in the variable 
pos[]) from a tainting displacement (stored in the variable disp[]) generated in an automatic 
tuning process, taking into account which of the parameters are intended to be modified 
(stored in the boolean variable adj[]). A very common constraint in the displacement is to 
maintain the order of the parameters. The preprogrammed function 
sortedUpdate(pos,disp,adj) can be invoked to compute this restricted displacement. The Java 
code can also use the variables min', 'max' and 'step', which represent respectively the 
minimum, maximum and division of the universe of discourse. The syntax of the block update 
is:  

  update { Java_function_body }                       
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The block source is used to define Java code that is directly included in the class code 
generated for the function definition. This code allows to define local methods that can be 
used into other blocks. The structure is:  

  source { Java_code }                       

The following example shows the definition of the membership function triangle.  

 mf triangle { 

   parameter a, b, c; 

   requires { a<b && b<c && b>=min && b<=max } 

   java { 

    equal { return (a<x && x<=b? (x-a)/(b-a) : (b<x && x<c? (c-x)/(c-

b) : 0)); } 

    greatereq { return (x<a? 0 : (x>b? 1 : (x-a)/(b-a) )); } 

    smallereq { return (x<b? 1 : (x>c? 0 : (c-x)/(c-b) )); } 

    center { return b; } 

    basis { return (c-a); } 

   } 

   ansi_c { 

    equal { return (a<x && x<=b? (x-a)/(b-a) : (b<x && x<c? (c-x)/(c-

b) : 0)); } 

    greatereq { return (x<a? 0 : (x>b? 1 : (x-a)/(b-a) )); } 

    smallereq { return (x<b? 1 : (x>c? 0 : (c-x)/(c-b) )); } 

    center { return b; } 

    basis { return (c-a); } 

   } 

   cplusplus { 

    equal { return (a<x && x<=b? (x-a)/(b-a) : (b<x && x<c? (c-x)/(c-

b) : 0)); } 

    greatereq { return (x<a? 0 : (x>b? 1 : (x-a)/(b-a) )); } 

    smallereq { return (x<b? 1 : (x>c? 0 : (c-x)/(c-b) )); } 

    center { return b; } 

    basis { return (c-a); } 

   } 

   derivative { 

    equal { 

     deriv[0] = (a<x && x<b ? (x-b)/((b-a)*(b-a)) : (x==a? 0.5/(a-b) : 

0)); 

     deriv[1] = (a<x && x<b ? (a-x)/((b-a)*(b-a)) : 

                (b<x && x<c ? (c-x)/((c-b)*(c-b)) : 

                (x==b? 0.5/(a-b) + 0.5/(c-b) : 0))); 

     deriv[2] = (b<x && x<c ? (x-b)/((c-b)*(c-b)) : (x==c? 0.5/(c-b) : 

0)); 

    } 

    greatereq { 

     deriv[0] = (a<x && x<b ? (x-b)/((b-a)*(b-a)) : (x==a? 0.5/(a-b) : 

0)); 

     deriv[1] = (a<x && x<b ? (a-x)/((b-a)*(b-a)) : (x==b? 0.5/(a-b) : 

0)); 

     deriv[2] = 0; 

    } 

    smallereq { 

     deriv[0] = 0; 

     deriv[1] = (b<x && x<c ? (c-x)/((c-b)*(c-b)) : (x==b? 0.5/(c-b) : 

0)); 

     deriv[2] = (b<x && x<c ? (x-b)/((c-b)*(c-b)) : (x==c? 0.5/(c-b) : 

0)); 

    } 
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    center { 

     deriv[0] = 1; 

     deriv[1] = 1; 

     deriv[2] = 1; 

    } 

    basis { 

     deriv[0] = -1; 

     deriv[1] = 0; 

     deriv[2] = 1; 

    } 

   } 

   update { 

    pos = sortedUpdate(pos,desp,adj); 

    if(pos[1]<min) pos[1]=min; 

    if(pos[2]<=pos[1]) pos[2] = pos[1]+step; 

    if(pos[1]>max) pos[1]=max; 

    if(pos[0]>=pos[1]) pos[0] = pos[1]-step; 

   } 

  } 

 

Membership function family definition 

A family of membership functions describes a set of membership functions that shares a list of 
parameters. Families are used to define sets of membership functions with certain constraints 
such as symmetrical membership functions, a fixed overlapping degree or a fixed order. Each 
membership function is referenced by its index on the family. The structure of the definition of 
a membership function family in a function package is as follows:  

  family identifier { blocks }                     

The blocks that can appear in a family definition are alias, parameter, requires, members, java, 
ansi_c, cplusplus, derivative, update and source.  

The block alias is used to define alternative names to identify the family. Any of these 
identifiers can be used to refer the family. The syntax of the block alias is:  

  alias identifier, identifier, ... ;                    

The block parameter allows the definition of those parameters which the family depends on. 
The last identifier can be followed by brackets to define a list of parameters. Its format is:  

  parameter identifier, identifier, ..., identifier[] ;                    

The block requires expresses the constraints on the parameter values by means of a Java 
Boolean expression that validates the parameter values. This expression can also use the 
values of the variables 'min' and 'max', which represent the minimum and maximum values in 
the universe of discourse of the linguistic variable considered. The structure of this block is:  

  requires { expression }                     

The block members defines the number of membership functions of the family by means of a 
Java expression which must return an integer value. The syntax of this block is:  
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  members { Java_function_body }                     

The blocks java, ansi_c and cplusplus describe the functions behavior by means of its 
description as a function body in Java, C and C++ programming languages, respectively. The 
format of these blocks is the following:  

  java { Java_function_body }  

  ansi_c { C_function_body }  

  cplusplus { C++_function_body }  

The definition of a family of membership functions includes not only the description of the 
functions behavior itself, but also the functions behavior under the greater-or-equal and 
smaller-or-equal modifications, and the computation of the center and basis values of the 
membership functions. As a consequence, the blocks java, ansi_c and cplusplus are divided 
into the following subblocks:  

  equal { code } 

  greatereq { code } 

  smallereq { code } 

  center { code } 

  basis { code }   

The subblock equal describes the function behavior. The subblocks greatereq and smallereq 
describe the greater-or-equal and smaller-or-equal modifications, respectively. The variable 'i' 
is used to identify the index of the membership function in the family. The input variable in 
these subblocks is called 'x', and the code can use the values of the family parameters and the 
variables 'min' and 'max', which represent the minimum and maximum values of the universe 
of discourse of the family. The subblocks greatereq and smallereq can be omitted. In that case, 
these transformations are computed by sweeping all the values of the universe of discourse. 
However, it is much more efficient to use an analytical function, so that the definition of these 
subblocks is strongly recommended.  

The subblocks center and basis describe the center and basis of the membership functions. The 
code of these subblocks can use the values of the variable 'i' (the index of the membership 
function), the family parameters and the variables 'min' and 'max'. This information is used by 
several simplified defuzzification methods. These subblocks are optional and their default 
functions return a zero value.  

The block derivative describes the derivative of each function with respect to each family 
parameter. This block is also divided into the subblocks equal, greatereq, smallereq, center and 
basis. The code of these subblocks consists of Java expressions assigning values to the variable 
'deriv[]'. The value of 'deriv[j]' represents the derivative of each function with respect to the j-
th parameter of the family. The description of the derivative function allows to compute the 
system error derivative used by gradient descent-based learning algorithms. The format is:  

  derivative { subblocks }                        

The block update is used to compute a valid set of parameter values (stored in the variable 
pos[]) from a tainting displacement (stored in the variable disp[]) generated in an automatic 
tuning process, taking into account which of the parameters are intended to be modified 
(stored in the boolean variable adj[]). A very common constraint in the displacement is to 
maintain the order of the parameters. The preprogrammed function 
sortedUpdate(pos,disp,adj) can be invoked to compute this restricted displacement. The Java 
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code can also use the variables min', 'max' and 'step', which represent respectively the 
minimum, maximum and division of the universe of discourse. The syntax of the block update 
is:  

  update { Java_function_body }                       

The block source is used to define Java code that is directly included in the class code 
generated for the function definition. This code allows to define local methods that can be 
used into other blocks. The structure is:  

  source { Java_code }                       

The following example shows the definition of the membership function family triangular.  

 family triangular { 

   parameter p[]; 

   requires { p.length==0 || (p.length>0 && p[0]>min && p[p.length-

1]<max && sorted(p)) } 

   members { return p.length+2; } 

   java { 

    equal { 

     double a = (i==0? min-1 : (i==1 ? min : p[i-2])); 

     double b = (i==0? min : (i==p.length+1? max : p[i-1])); 

     double c = (i==p.length? max : (i==p.length+1? max+1 : p[i])); 

     return (a<x && x<=b? (x-a)/(b-a) : (b<x && x<c? (c-x)/(c-b): 0)); 

    } 

    greatereq { 

     double a = (i==0? min-1 : (i==1 ? min : p[i-2])); 

     double b = (i==0? min : (i==p.length+1? max : p[i-1])); 

     return (x<a? 0 : (x>b? 1 : (x-a)/(b-a) )); 

    } 

    smallereq { 

     double b = (i==0? min : (i==p.length+1? max : p[i-1])); 

     double c = (i==p.length? max : (i==p.length+1? max+1 : p[i])); 

     return (x<b? 1 : (x>c? 0 : (c-x)/(c-b) )); 

    } 

    center { 

     double b = (i==0? min : (i==p.length+1? max : p[i-1])); 

     return b; 

    } 

    basis { 

     double a = (i<=1 ? min : p[i-2]); 

     double c = (i>=p.length? max : p[i]); 

     return (c-a); 

    } 

   } 

   ansi_c { 

    equal { 

     double a = (i==0? min-1 : (i==1 ? min : p[i-2])); 

     double b = (i==0? min : (i==length+1? max : p[i-1])); 

     double c = (i==length? max : (i==length+1? max+1 : p[i])); 

     return (a<x && x<=b? (x-a)/(b-a) : (b<x && x<c? (c-x)/(c-b): 0)); 

    } 

    greatereq { 

     double a = (i==0? min-1 : (i==1 ? min : p[i-2])); 

     double b = (i==0? min : (i==length+1? max : p[i-1])); 

     return (x<a? 0 : (x>b? 1 : (x-a)/(b-a) )); 

    } 
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    smallereq { 

     double b = (i==0? min : (i==length+1? max : p[i-1])); 

     double c = (i==length? max : (i==length+1? max+1 : p[i])); 

     return (x<b? 1 : (x>c? 0 : (c-x)/(c-b) )); 

    } 

    center { 

     double b = (i==0? min : (i==length+1? max : p[i-1])); 

     return b; 

    } 

    basis { 

     double a = (i<=1 ? min : p[i-2]); 

     double c = (i>=length? max : p[i]); 

     return (c-a); 

    } 

   } 

   cplusplus { 

    equal { 

     double a = (i==0? min-1 : (i==1 ? min : p[i-2])); 

     double b = (i==0? min : (i==length+1? max : p[i-1])); 

     double c = (i==length? max : (i==length+1? max+1 : p[i])); 

     return (a<x && x<=b? (x-a)/(b-a) : (b<x && x<c? (c-x)/(c-b): 0)); 

    } 

    greatereq { 

     double a = (i==0? min-1 : (i==1 ? min : p[i-2])); 

     double b = (i==0? min : (i==length+1? max : p[i-1])); 

     return (x<a? 0 : (x>b? 1 : (x-a)/(b-a) )); 

    } 

    smallereq { 

     double b = (i==0? min : (i==length+1? max : p[i-1])); 

     double c = (i==length? max : (i==length+1? max+1 : p[i])); 

     return (x<b? 1 : (x>c? 0 : (c-x)/(c-b) )); 

    } 

    center { 

     double b = (i==0? min : (i==length+1? max : p[i-1])); 

     return b; 

    } 

    basis { 

     double a = (i<=1 ? min : p[i-2]); 

     double c = (i>=length? max : p[i]); 

     return (c-a); 

    } 

   } 

   derivative { 

    equal { 

     double a = (i==0? min-1 : (i==1 ? min : p[i-2])); 

     double b = (i==0? min : (i==p.length+1? max : p[i-1])); 

     double c = (i==p.length? max : (i==p.length+1? max+1 : p[i])); 

     if(i>=2) { 

      if(a<x && x<b) deriv[i-2] = (x-b)/((b-a)*(b-a)); 

      else if(x==a) deriv[i-2] = 0.5/(a-b); 

      else deriv[i-2] = 0; 

     } 

     if(i>=1 && i<=p.length) { 

      if(a<x && x<b) deriv[i-1] = (a-x)/((b-a)*(b-a)); 

      else if(b<x && x<c) deriv[i-1] = (c-x)/((c-b)*(c-b)); 

      else if(x==b) deriv[i-1] = 0.5/(a-b) + 0.5/(c-b); 

      else deriv[i-1] = 0; 

     } 

     if(i<p.length) { 

      if(b<x && x<c) deriv[i] = (x-b)/((c-b)*(c-b)); 
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      else if(x==c) deriv[i] = 0.5/(c-b); 

      else deriv[i] = 0; 

     } 

    } 

    greatereq { 

     double a = (i==0? min-1 : (i==1 ? min : p[i-2])); 

     double b = (i==0? min : (i==p.length+1? max : p[i-1])); 

     if(i>=2) { 

      if(a<x && x<b) deriv[i-2] = (x-b)/((b-a)*(b-a)); 

      else if(x==a) deriv[i-2] = 0.5/(a-b); 

      else deriv[i-2] = 0; 

     } 

     if(i>=1 && i<=p.length) { 

      if(a<x && x<b) deriv[i-1] = (a-x)/((b-a)*(b-a)); 

      else if(x==b) deriv[i-1] = 0.5/(a-b); 

      else deriv[i-1] = 0; 

     } 

    } 

    smallereq { 

     double b = (i==0? min : (i==p.length+1? max : p[i-1])); 

     double c = (i==p.length? max : (i==p.length+1? max+1 : p[i])); 

     if(i>=1 && i<=p.length) { 

      if(b<x && x<c) deriv[i-1] = (c-x)/((c-b)*(c-b)); 

      else if(x==b) deriv[i-1] = 0.5/(c-b); 

      else deriv[i-1] = 0; 

     } 

     if(i<p.length) { 

      if(b<x && x<c) deriv[i] = (x-b)/((c-b)*(c-b)); 

      else if(x==c) deriv[i] = 0.5/(c-b); 

      else deriv[i] = 0; 

     } 

    } 

    center { 

     if(i>=1 && i<=p.length) deriv[i-1] = 1; 

    } 

    basis { 

     if(i>1) deriv[i-2] = -1; 

     if(i<p.length) deriv[i] = 1; 

    } 

   } 

   update { 

    if(p.length == 0) return; 

    pos = sortedUpdate(pos,desp,adj); 

    if(pos[0]<=min) { 

     pos[0]=min+step; 

     for(int i=1;i<p.length; i++) { 

      if(pos[i]<=pos[i-1]) pos[i] = pos[i-1]+step; 

      else break; 

     } 

    } 

    if(pos[p.length-1]>=max) { 

     pos[p.length-1]=max-step; 

     for(int i=p.length-2; i>=0; i--) { 

      if(pos[i]>=pos[i+1]) pos[i] = pos[i+1]-step; 

      else break; 

     } 

    } 

   } 

  } 
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Defuzzification method definition 

Defuzzification methods obtain the representative value of a fuzzy set. These methods are 
used in the final stage of the fuzzy inference process, when it is not possible to work with fuzzy 
conclusions. The structure of a defuzzification method definition in a function package is as 
follows:  

  defuz identifier { blocks }                   

The blocks that can appear in a defuzzification method definition are alias, parameter, 
requires, definedfor, java, ansi_c, cplusplus and source.  

The block alias is used to define alternative names to identify the method. Any of these 
identifiers can be used to refer the method. The syntax of the block alias is:  

  alias identifier, identifier, ... ;                      

The block parameter allows the definition of those parameters which the method depends on. 
Its format is:  

  parameter identifier, identifier, ... ;                      

The block requires expresses the constraints on the parameter values by means of a Java 
Boolean expression that validates the parameter values. The structure of this block is:  

  requires { expression }                      

The block definedfor is used to enumerate the types of membership functions that the method 
can use as partial conclusions. This block has been included because some simplified 
defuzzification methods only work with certain membership functions. This block is optional. 
By default, the method is assumed to work with all the membership functions. The structure of 
the block is:  

  definedfor identificador, identificador, ... ;                    

The block source is used to define Java code that is directly included in the class code 
generated for the method definition. This code allows to define local functions that can be 
used into other blocks. The structure is:  

  source { Java_code }                            

The blocks java, ansi_c and cplusplus describe the behavior of the method by means of its 
description as a function body in Java, C and C++ programming languages, respectively. The 
format of these blocks is the following:  

  java { Java_function_body } 

  ansi_c { C_function_body } 

  cplusplus { C++_function_body }                       

The input variable for these functions is the object 'mf', which encapsulates the fuzzy set 
obtained as the conclusion of the inference process. The code can use the value of the 
variables 'min', 'max' and 'step', which represent respectively the minimum, maximum and 
division of the universe of discourse of the fuzzy set. Conventional defuzzification methods are 
based on sweeps along all the values of the universe of discourse, and they compute the 
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membership degree of each value in the universe. On the other side, simplified defuzzification 
methods use sweeps along the partial conclusions, and they compute the representative value 
in terms of the activation degree, center, basis and parameters of these partial conclusions. 
The way this information is accessed by the object mf depends on the programming language, 
as shown in the next table.  

Description java ansi_c cplusplus 

membership degree mf.compute(x) mf.compute(x) mf.compute(x) 

partial conclusions mf.conc[] mf.conc[] mf.conc[] 

number of partial conclusions mf.conc.length mf.length mf.length 

activation degree of the i-th 
conclusion 

mf.conc[i].degree() mf.degree[i] 
mf.conc[i]-
>degree() 

center of the i-th conclusion mf.conc[i].center() center(mf.conc[i]) 
mf.conc[i]-
>center() 

basis of the i-th conclusion mf.conc[i].basis() basis(mf.conc[i]) mf.conc[i]->basis() 

j-th parameter of the i-th 
conclusion 

mf.conc[i].param(j) param(mf.conc[i],j) 
mf.conc[i]-
>param(j) 

number of the input variables in 
the rule base 

mf.input.length mf.inputlength mf.inputlength 

values of the input variables in 
the rule base 

mf.input[] mf.input[] mf.input[] 

The following example shows the definition of the classical CenterOfArea defuzzification 
method.  

 defuz CenterOfArea { 

  alias CenterOfGravity, Centroid; 

  java { 

   double num=0, denom=0; 

   for(double x=min; x<=max; x+=step) { 

    double m = mf.compute(x); 

    num += x*m; 

    denom += m; 

   } 

   if(denom==0) return (min+max)/2; 

   return num/denom; 

  } 

  ansi_c { 

   double x, m, num=0, denom=0; 

   for(x=min; x<=max; x+=step) { 

    m = compute(mf,x); 

    num += x*m; 

    denom += m; 

   } 

   if(denom==0) return (min+max)/2; 

   return num/denom; 

  } 

 cplusplus { 

   double num=0, denom=0; 
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   for(double x=min; x<=max; x+=step) { 

    double m = mf.compute(x); 

    num += x*m; 

    denom += m; 

   } 

   if(denom==0) return (min+max)/2; 

   return num/denom; 

  } 

 } 

The following example shows the definition of a simplified defuzzification method (Weighted 
Fuzzy Mean).  

 defuz WeightedFuzzyMean { 

  definedfor triangle, isosceles, trapezoid, bell, rectangle; 

  java { 

   double num=0, denom=0; 

   for(int i=0; i<mf.conc.length; i++) { 

    num += mf.conc[i].degree()*mf.conc[i].basis()*mf.conc[i].center(); 

    denom += mf.conc[i].degree()*mf.conc[i].basis(); 

   } 

   if(denom==0) return (min+max)/2; 

   return num/denom; 

  } 

  ansi_c { 

   double num=0, denom=0; 

   int i; 

   for(i=0; i<mf.length; i++) { 

    num += mf.degree[i]*basis(mf.conc[i])*center(mf.conc[i]); 

    denom += mf.degree[i]*basis(mf.conc[i]); 

   } 

   if(denom==0) return (min+max)/2; 

   return num/denom; 

  } 

 cplusplus { 

   double num=0, denom=0; 

   for(int i=0; i<mf.length; i++) { 

    num += mf.conc[i]->degree()*mf.conc[i]->basis()*mf.conc[i]-

>center(); 

    denom += mf.conc[i]->degree()*mf.conc[i]->basis(); 

   } 

   if(denom==0) return (min+max)/2; 

   return num/denom; 

  } 

 } 

Este último ejemplo muestra la definición del método de Takagi-Sugeno de primer orden.  
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defuz TakagiSugeno { 

  definedfor parametric; 

  java { 

   double denom=0; 

   for(int i=0; i<mf.conc.length; i++) denom += mf.conc[i].degree(); 

   if(denom==0) return (min+max)/2; 

   double num=0; 

   for(int i=0; i<mf.conc.length; i++) { 

    double f = mf.conc[i].param(0); 

    for(int j=0; j<mf.input.length; j++) f += 

mf.conc[i].param(j+1)*mf.input[j]; 

    num += mf.conc[i].degree()*f; 

   } 

   return num/denom; 

  } 

  ansi_c { 

   double f,num=0,denom=0; 

   int i,j; 

   for(i=0; i<mf.length; i++) denom += mf.degree[i]; 

   if(denom==0) return (min+max)/2; 

   for(i=0; i<mf.length; i++) { 

    f = param(mf.conc[i],0); 

    for(j=0; j<mf.inputlength; j++) f += 

param(mf.conc[i],j+1)*mf.input[j]; 

    num += mf.degree[i]*f; 

   } 

   return num/denom; 

  } 

  cplusplus { 

   double num=0,denom=0; 

   for(int i=0; i<mf.length; i++) { 

    double f = mf.conc[i]->param(0); 

    for(int j=0; j<mf.inputlength; j++) f += mf.conc[i]-

>param(j+1)*mf.input[j]; 

    num += mf.conc[i]->degree()*f; 

    denom += mf.conc[i]->degree(); 

   } 

   if(denom==0) return (min+max)/2; 

   return num/denom; 

  } 

 } 
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The standard package xfl 

The XFL3 specification language allows the user to define its own membership functions, 
families of membership functions, crisp functions, defuzzification methods, and functions 
related with fuzzy connectives and linguistic hedges. In order to ease the use of XFL3, the most 
well-known functions have been included in a standard package called xfl. The binary functions 
included are the following:  

Name Type Java description 

min  T-norm  (a<b? a : b)  

prod  T-norm  (a*b)  

bounded_prod  T-norm  (a+b-1>0? a+b-1: 0)  

drastic_prod  T-norm  (a==1? b: (b==1? a : 0) )  

max  S-norm  (a>b? a : b)  

sum  S-norm  (a+b-a*b)  

bounded_sum  S-norm  (a+b<1? a+b: 1)  

drastic_sum  S-norm  (a==0? b : (b==0? a : 0) )  

dienes_resher  Implication  (b>1-a? b : 1-a)  

mizumoto  Implication  (1-a+a*b)  

lukasiewicz  Implication  (b<a? 1-a+b : 1)  

dubois_prade  Implication  (b==0? 1-a : (a==1? b : 1) )  

zadeh  Implication  (a<0.5 || 1-a>b? 1-a : (a<b? a : b))  

goguen  Implication  (a<b? 1 : b/a)  

godel  Implication  (a<=b? 1 : b)  

sharp  Implication  (a<=b? 1 : 0)  

The unary functions included in the package xfl are: 

Name  Parameter  Java description 

not  -  (1-a)  

sugeno  l  (1-a)/(1+a*l)  

square  -  (a*a)  

cubic  -  (a*a*a)  

sqrt  -  Math.sqrt(a)  

yager  w  Math.pow( ( 1 - Math.pow(a,w) ) , 1/w )  

pow  w  Math.pow(a,w)  

parabola  -  4*a*(1-a)  

edge  -  (a<=0.5? 2*a : 2*(1-a) )  
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The crisp functions included in the package xfl are:  

Name  Parameter  Description 

add2  -  Suma de variables  

addN  N  Suma de N variables  

addDeg  -  Suma de dos variables angulares (en grados)  

addRad  -  Suma de dos variables angulares (en radianes)  

diff2  -  Diferencia entre dos variables  

diffDeg  -  Diferencia entre dos variables angulares (en grados)  

diffRad  -  Diferencia entre dos variables ngulares (en radianes)  

prod  -  Producto de dos variables  

div  -  División entre dos variables  

select  N  Selección entre N variables  

The membership functions defined in the package xfl are the following:  

Name  Parameters  Description 

triangle  a,b,c  

 

trapezoid  a,b,c,d  

 

isosceles  a,b  

 

slope  a,m  

 

bell  a,b  
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sigma  a,b  

 

rectangle  a,b  

 

singleton  a  

 

parametric  unlimited  -  

The families of membership functions defined in the package xfl are the following:  

Name  Parameters  Description 

rectangular  p[]  

 

triangular  p[]  

 

sh_triangular  p[]  

 

spline  p[]  
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The defuzzification methods defined in the standard package are:  

Name  Type  Defined for 

CenterOfArea Conventional any function 

FirstOfMaxima Conventional any function 

LastOfMaxima Conventional any function 

MeanOfMaxima Conventional any function 

FuzzyMean Simplified triangle, isosceles, trapezoid, bell, rectangle, singleton 

WeightedFuzzyMean Simplified triangle, isosceles, trapezoid, bell, rectangle 

Quality Simplified triangle, isosceles, trapezoid, bell, rectangle 

GammaQuality Simplified triangle, isosceles, trapezoid, bell, rectangle 

MaxLabel Simplified singleton 

TakagiSugeno Simplified parametric 
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The Xfuzzy 3 development environment 

 The Xfuzzy 3 development environment  
o Description stage 

 System edition  (xfedit)  
 Package edition  (xfpkg)  

o Verification Stage 
 Graphical representation  (xfplot)  
 Inference monitor  (xfmt)  
 System simulation  (xfsim)  

o Tuning stage 
 Knowledge acquisition  (xfdm) 
 Time series prediction  (xftsp)  
 Supervised learning  (xfsl) 
 Simplification (xfsp) 

o Synthesis stage 
 C code generator  (xfc)  
 C++ code generator  (xfcpp)  
 Java code generator  (xfj)  
 VHDL code generator  code generator  (xfvhdl) 
 SysGen model generator (xfsg) 

Xfuzzy 3 is a development environment for designing fuzzy systems, which integrates several 
tools covering the different stages of the design. The environment integrates all these tools 
under a graphical user interface which eases the design process. The next figure shows the 
main window of the environment.  

 



   TOC

 36  

The menu bar in the main window contains the links to the different tools. Under the menu 
bar, there is a button bar with the most used options. The central zone of the window shows 
two lists. The first one is the list of loaded systems (the environment can work with several 
systems simultaneously). The second list contains the loaded packages. The rest of the main 
window is occupied by a message area.  

The menu bar is divided into the different stages of the system development. The File menu 
allows to create, load, save and close a fuzzy system. This menu contains also the options to 
create, load, save and close a function package. The menu ends with the option to exit the 
environment. The Design menu is used to edit a selected fuzzy system (xfedit) or a selected 
package (xfpkg). The Tuning menu contains the links to the knowledge acquisition tool (xfdm), 
the time series prediction tool (xftsp), the supervised learning tool (xfsl), and the simplification 
tool (xfsp). The Verification menu allows to represent the system behavior on a 2-dimensional 
or 3-dimensional plot (xfplot), monitoring the system (xfmt), and simulating it (xfsim). The 
Synthesis menu is divided into two parts: the software synthesis, that generates system 
descriptions in C (xfc), C++ (xfcpp), and Java (xfj); and the hardware synthesis, that translates 
the description of a fuzzy system into VHDL code (xfvhdl) or a Simulink model for Xilinx's 
SysGen tool (xfsg). The Set Up menu is used to modify the environment working directory, to 
save the environment messages in an external log file, to close the log file, to clean up the 
message area of the main window, and to change the look and feel of the environment.  

Many options on the menu bar are only enabled when a fuzzy system is selected. A fuzzy 
system is selected by just clicking its name in the system list. Double clicking the name will 
open the edition tool. The same result is obtained by pressing the Enter key once the system 
has been selected. The Insert key will create a new system and the Delete key is used to close 
the system. These shortcuts are common to all the lists of the environment: the Insert key is 
used to insert a new element on a list; the Enter key or a double click will edit the selected 
element; and the Delete key will remove the element from the list. 

 

Description stage 

The first step in the development of a fuzzy system is to select a preliminary description of the 
system. This description will be later refined as a result of the tuning and verification stages.  

Xfuzzy 3 contains two tools assisting in the description of fuzzy systems: xfedit and xfpkg. The 
first one is dedicated to the logical definition of the system, that is, the definition of its 
linguistic variables and the logical relations between them. On the other side, the xfpkg tool 
eases the description of the mathematical functions assigned to the fuzzy operators, linguistic 
hedges, membership functions and defuzzification methods. 
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 The system edition tool – Xfedit 

The xfedit tool offers a graphical interface to ease the description of fuzzy systems, avoiding 
the need for an in depth knowledge of the XFL3 language. The tool is formed by a set of 
windows that allows the user to create and edit the operator sets, linguistic variable types, and 
rule bases included in the fuzzy system, as well as describing the hierarchical structure of the 
system under development.  

The tool can be executed directly from the command line with the expression "xfedit file.xfl", 
or from the environment's main window, using the System Edition option in the Design menu.  

 

The figure shows the main window of xfedit. The File menu contains the following options: 
"Save", "Save As", "Load Package", "Edit XFL3 File" and "Close Edition". The options "Save" and 
"Save As" are used to save the present state of the system definition. The option "Load 
Package" is used to import new functions that can be assigned to the different fuzzy operators. 
The XFL3 file edition option opens a text window to edit the XFL3 description of the system. 
The last option is used to close the tool. The field Name under the menu bar is not editable. 
The name of the system under development can be changed by the Save As option. The body 
of the window is divided into three parts: the left one contains the lists of input and output 
global variables; the right part includes the lists of the defined operator sets, linguistic variable 
types and rule bases; finally, the central zone shows the hierarchical structure of the system.  

The shortcuts of the different lists are the common ones of the environment: the Insert key 
creates a new element for each list; the Delete key is used to remove an element (when it has 
not been used); and the Enter key or a double click allows the element edition.  

The creation of a fuzzy system in Xfuzzy usually starts with the definition of the operator sets. 
The figure shows the window for editing operator sets in xfedit. It has a simple behavior. The 
first field contains the identifier of the operator set. The remaining fields contain pulldown lists 
to assign functions to the different fuzzy operators. If the selected function needs the 
introduction of some parameters, a new window will ask for them. The functions available in 
each list are those defined in the loaded packages. It is not necessary to make a choice for 
every field. At the bottom of the window, a command bar presents four options: "Ok", "Apply", 
"Reload" and "Cancel". The first option saves the operator set and closes the window. The 
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second one just saves the last changes. The third option actualizes the field with the last saved 
values. The last one closes the window rejecting the last changes.  

 

The following step in the description of a fuzzy system is to create the linguistic variable types, 
by means of the Type Creation window shown below. A new type needs the introduction of its 
identifier and universe of discourse (minimum, maximum and cardinality). The window 
includes several predefined types corresponding to the most usual partitions of the universes. 
These predefined types contain homogeneous triangular, trapezoidal, bell-shaped and 
singleton partitions, shouldered-triangular and shouldered-bell partitions. Other predefined 
types are equal bells and singletons, which are commonly used as a first option for output 
variable types. When one of the previous predefined types is selected, the number of 
membership function of the partition must be introduced. The predefined types also include a 
blank option, which generates a type without any membership function, and the extension of 
an existing type (selected in the Parent field), that implements the inheritance mechanism of 
XFL3.  

 

Once a type has been created, it can be edited using the Type Edition window. This window 
allows the modification of the type name and universe of discourse, for instance by adding, 
editing and removing the membership functions of the edited type. The window shows a 
graphical representation of the membership functions, where the selected membership 
function is represented in a different color. The bottom of the window presents a command 
bar with the usual buttons to save or reject the last changes, and to close the window. It is 
worth considering that the modifications on the definition of the universe of discourse can 
affect the membership functions. Hence, a validation of the membership function parameters 
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is done before saving the modifications, and an error message appear whenever a 
membership function definition becomes invalid.  

 

A membership function can be created or edited from the MF list with the usual accelerators 
(Insert key and Enter key or double click). The previous figure shows the window for editing a 
membership function. The window has fields to introduce the name of the linguistic label, to 
select the kind of membership function, and to introduce the parameter values. The right side 
of the window shows a graphical representation of all the membership functions, with the 
function being edited shown in a different color. The bottom of the window shows a command 
bar with three options: Set, to close the window saving the changes, Refresh, to repaint the 
graphical representation, and Cancel, to close the window without saving the modifications.  

 

The third step in the definition of a fuzzy system is to describe the rule bases expressing the 
relationship among the system variables. Rule bases can be created, edited and removed from 
their list with the usual shortcuts (Insert key, Enter key or double click, and Delete key). The 
following window eases the edition of the rule bases.  
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The rule base edition window is divided into three zones: the left side has the fields to 
introduce the names of the rule base and the operator set used, and to introduce the lists of 
input and output variables; the right zone is dedicated to showing the contents of the rules 
included in the rule base; and the bottom part of the window contains the command bar with 
the usual buttons to save or reject the modifications, and to close the window.  

The input and output variables can be created, edited, or removed with the common list 
bindkeys. The information required by a variable definition is the name and the type of the 
variable.  

The contents of the rules can be displayed in three formats: free, tabular, and matricial. The 
free format uses three fields for each rule. The first one contains the confidence weight. The 
second field shows the antecedent of the rule. This is an auto-editable field, where changes 
can be made by selecting the term to modify (a "?" symbol means a blank term) and by using 
the buttons of the window. The third field of each rule contains the consequent description. 
This is also an auto-editable field that can be modified by clicking the "->" button. New rules 
can be generated by introducing values on the last row (marked with the "*" symbol).  

The button bar at the bottom of the free form allows to create conjunction terms ("&" button), 
disjunction terms ("|" button), modified terms with the linguistic hedges not ("!" button), more 
or less ("~" button), slightly ("%" button), and strongly ("+" button), and single terms relating a 
variable and a label with the clauses equal to ("=="), not equal to ("!="), greater than (">"), 
smaller than ("<"), greater or equal to (">="), smaller or equal to ("<="), approximately equal to 
("~="), strongly equal to ("+="), and slightly equal to ("%="). The "->" button is used to add a 
rule conclusion. The ">..<" button is used to remove a conjunction or disjunction term (e.g. a 
term "v == l & ?" is transformed into "v == l"). The free form allows the user to describe more 
complex relationships among the variables than the other forms.  
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The tabular format is useful to define rules whose antecedent use only the operators and and 
equal. Each rule has a field to introduce the confidence weight and a pulldown list per input 
and output variables. There is no need of selecting all the variables fields, but one input and 
one output variables have always to be selected. If a rule base contains a rule that cannot be 
expressed in the tabular format, the table form can not be opened and an error message 
appears instead.  

 

The matricial format is specially designed to describe a 2-input 1-output rule base. This form 
shows the content of a rule base in a clear and compact way. The matrix form generates rules 
such as "if(x==X & y==Y) -> z=Z", i.e., rules with a 1.0 confidence weight and formed by the 
conjunction of two equalities. Those rule bases that do not have the proper number of 
variables, or that contain rules with a different format, can not be shown in this form.  
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Once the operator sets, variable types, and rule bases have been defined; the following step in 
a fuzzy system definition is to define the global input and output variables by using the 
Variable Properties window. The information required to create a variable is its name and type.  

 

The final step in a fuzzy system definition is the description of its (possibly hierarchical) 
structure. The bindkey used to introduce a new module (a call to a rule base) in a hierarchy is 
the Insert key. To make links between the modules, the user must press the mouse over the 
node representing the origin variable and release the button over the destination variable 
node. To remove a link, the user must be select it by clicking on the destination variable node, 
and then press the Delete key. The tool does not allow to create a loop between modules.  

 

The tool allows the individualized edition of the rules bases of a hierarchical system. To do this, 
it is necessary to display the system hierarchy in the main Xfuzzy window and double-click on 
the rule base to be edited, or to select the rule base and press the Insert key. When selecting a 
rule base, some of the tools in the Xfuzzy main menu are disabled. This is because the use of 
rule bases of hierarchical systems is limited to tasks of editing, tuning, graphical representation 
and synthesis. 
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In the xfedit window it is possible to add new operator sets, change the types of the output 
variables and modify the rules. 

 

The options enabled in the editing window work in a similar way to those used when editing 
the complete system. As an observation, it is convenient to add that to change the name of a 
rule base, you have to access the rule base edit window and change the name there. 
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 The package edition tool – Xfpkg 

The description of a fuzzy system within the Xfuzzy 3 environment is divided into two parts. 
The system logical structure (including the definitions of operator sets, variable types, rule 
bases, and hierarchical behavior structure) is specified in files with the extension ".xfl", and can 
be graphically edited with xfedit. On the other hand, the mathematical description of the 
functions used as fuzzy connectives, linguistic hedges, membership functions, families of 
membership functions, crisp blocks, and defuzzification methods are specified in packages.  

The xfpkg tool is dedicated to easing the package edition. The tool implements a graphical user 
interface that shows the list of the different functions included in the package, and the 
contents of the different fields of a function definition. Most of these fields contains code 
describing the function in different programming languages. This code must be introduced 
manually. The tool can be executed from the command line or from the main window of the 
environment, using the option Edit package in the Design menu.  

 

The previous figure shows the main window of xfpkg. The File menu contains the options 
"Save", "Save as", "Compile", "Delete" and "Close edition". The first two options are used to 
save the package file. The option "Compile" carries out a compilation process that generates 
the ".java" and ".class" files related to each function defined in the package. The option 
"Delete" is used to remove the package file and all the ".java" and ".class" files generated by 
the compilation process. The last option is used to close the tool. 

The main window  contains six lists showing the different kinds of functions included in the 
package: binary functions (related to conjunction, disjunction, aggregation, and implication 
operators), unary functions (associated with linguistic hedges), membership functions (related 
to linguistic labels), families of membership functions (used to describe a set of membership 
functions), crisp functions (associated with crisp blocks),  and defuzzification methods (used to 
obtain representative values of the fuzzy conclusions).  

A double click on any element of the lists will open the function definition window. This 
window shows the content of the different fields of a function definition. The bottom of this 
part contains a group of three buttons: "Edit", "Apply" and "Reload". When a function is 
selected in a list, its fields cannot be modified at first. The Edit command is used to allow the 
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user modifying the fields. The Apply command saves the changes of the definition. This 
includes the generation of the ".java" and ".class" files. The Reload command rejects the 
modifications and actualizes the fields with the previous values.  

The fields of a function definition are distributed among eight tabbed panels. The Alias panel 
contains the list of alternative identifiers. 

 

The Parameters panel contains the enumeration of the parameters used by the edited 
function.  

 

The panel titled Requirements is used to describe the constraints on the parameter values.  
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The Java, C and C++ panels contain the description of the function behavior in these 
programming languages.  

 

The Derivative panel contains the description of the derivative function.  
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The last panel contains the source block with the Java code of local methods that can be used 
in another fields and that are directly incorporated in the ".java" file.  

The definition of a membership function or a family of membership functions requires 
additional information to describe the function behavior in the different programming 
languages. In these cases, the Java, C, C++ and Derivative panels contain five fields to show the 
contents of the subblocks equal, greatereq, smallereq, center, and basis.  

 

In addition, the definition window for membership functions and families of membership 
functions also include an Update panel describing how to modify the values of the function 
parameters in terms of a set of displacements.  
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The definition of a family of membership functions contains an additional panel describing 
how to compute the number of functions included in that family.  

 

Regarding defuzzification methods, they can include the enumeration of the membership 
functions that can be used by each method. This enumeration appears in the Requirements 
panel.  
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Finally, the window describing a crisp function includes an Inputs panel that defines the 
number of input variables of the function.  

 

The xfpkg tool implements a graphical interface that allows the user to view and edit the 
definition of the functions included into a package file. This tool is used to describe the 
mathematical behavior of the defined functions in a graphical way. So, this tool is the 
complement of the xfedit tool, which describes the logical structure of the system, in the fuzzy 
system description stage. 
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Verification stage 

The verification stage in the fuzzy system design process consists in studying the behavior of 
the fuzzy system under development. The aim of this stage is the detection of probable 
deviations on the expected behavior and the identification of the sources of these deviations.  

The Xfuzzy environment covers the verification stage with three tools. The first one is xfplot, 
which shows the system behavior by a two-dimensional or three-dimensional plot. The 
monitor tool, xfmt, shows the activation degree of every linguistic label and logical rule, as well 
as the value of the different inner variables, for a given set of input values. The last tool, xfsim, 
is aimed at simulating the system within its actual or modeled operational environment. It 
allows illustrating the system evolution by means of a graphical representation of user-
selected variables.  

 The graphical representation tool - Xfplot 

The xfplot tool illustrates the behavior of a fuzzy system by a 2-dimensional or 3-dimensional 
representation. The tool can be executed from the command line with the expression "xfplot 
file.xfl", or from the main window of the environment, using the option "Graphical 
representation" in the Verification menu.  

The main window of the tool is formed by a central panel, which shows the graphical 
representation, and an upper bar, dedicated to configuring the representation. 

 

The File menu at the upper bar allows to save the represented data into an external file ("Save 
Data"), to save the graphical representation as an image (opción "Save image"), to refresh the 
graphical representation ("Actualize"), and to close the tool ("Close"). The Configuration menu 
is used to choose the kind of representation ("Plot Mode"), the colors of the plot ("Color 
Model"), and the values for the input variables ("Input Values"), so as to load a configuration 
from an external file ("Load Configuration") or to save the configuration into an external file 
("Save Configuration"). Three pulldown lists allow the selection of the variables assigned to 
each axis. The last field contains the number of points used in the partition of the X and Y axis. 
This is an important parameter because it determines the representation resolution. A low 
value in this parameter can exclude important details of the system behavior. On the other 
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hand, a high value will make it difficult to understand the represented surface, as it will use a 
very dense grid. The default value of this parameter is 40.  

The 3-dimensional representation includes the possibility of rotating the surface by using two 
sliding buttons at the right and bottom parts of the plot. This rotation capability eases the 
interpretation of the represented surface.  

 

When choosing a 2-dimensional representation, the central panel changes to show a plain plot 
wich represents the variation of the output variable selected as Z axis, with respect to the 
input variable selected as X axis.  

 

When the system under representation contains a number of input variables greater than the 
required by the kind of representation, it is necessary to introduce the values for the non-
selected input variables. This can be done by the option "Input Values", which opens the 
following window.  
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 The inference monitor tool – Xfmt 

The aim of the xfmt tool is to monitor the fuzzy inference process in the system, i.e., to show 
graphically the values of the different inner variables and the activation degree of the logical 
rules and linguistic labels, for a given set of input values. The tool can be executed from the 
command line with the expression "xfmt file.xfl", or from the main window of the 
environment, using the option "Monitor" in the Verification menu.  

 

The main window of xfmt is divided into three parts. The left zone is used to introduce the 
values of the global input variables. For each variable, there is a field to introduce manually its 
value, and a sliding button to introduce the value as a position within the variable range. The 
right side shows the fuzzy set associated with the value of the global output variables, as well 
as the crisp (defuzzified) value for that variable. This crisp value is also shown as a singleton in 
the plot of the fuzzy set (if the fuzzy set is already a singleton, this plot only shows this 
singleton). The center of the window illustrates the (hierarchical) structure of the system. .  

The tool also includes a window to monitor the inner values of the inference process on each 
rule base. To open this window, just click on the rule base on the hierarchical structure of the 
system.  
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The rule base monitor window is divided into three parts. The values of the input variables are 
shown at the left as singleton values within the membership functions assigned to the 
different linguistic labels. The center of the window contains a set of fields with the activation 
degree of each rule. The right side shows the values of the output variables obtained by the 
inference process. If the operator set used in the rule base specifies a defuzzification method, 
the output value is defuzzified, and the variable plot shows not only the fuzzy value but also 
the crisp value that is finally assigned to the output variable. 

This tool can be used to monitor the behavior of each of the rules bases of a hierarchical 
inference system (selecting each rule base before invoking xfmt). In this way it is possible to 
analyze the input/output behavior of a certain rule base by modifying values of internal 
variables of the system. 

 
 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 The simulation tool – Xfsim 
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The xfsim tool is dedicated to study feedback systems. The tool implements a simulation of the 
system behavior connected to the plant. The tool can be executed from the command line 
with the expression "xfsim file.xfl", or from the main window of the environment with the 
option "Simulation" in the Verification menu.  

 

The main window of xfsim is shown in the figure. The configuration of the simulation process is 
made at the left side of the window, while the right side shows the status of the feedback 
system. The bottom of the window contains a menu bar with the options "Load", "Save", 
"Run/Stop", "Reload" and "Close". The first option is used to load a configuration for the 
simulation process. The second one saves the present configuration on an external file. The 
Run/Stop option is used to start and stop the simulation process. The Reload option rejects the 
current simulation and reinitializes the tool. The last option exits the tool.  

The configuration of a simulation process is done by the selection of the plant model 
connected with the fuzzy system and the description of the plant initial values, the end 
conditions, and a list of desired outputs for the simulation process. These outputs can be a log 
file to save the values of some selected variables, and graphical representations of these 
variables. The simulation status contains the number of iterations, the elapsed time for the 
initialization of the simulation, the values of the fuzzy system input variables, which represent 
the plant status, and the values of the fuzzy system output variables, which represent the 
action of the fuzzy system on the plant.  

The plant connected to the fuzzy system is described by a file with '.class' extension, containing 
the Java binary code of a class describing the plant behavior. This class must implement the 
interface xfuzzy.PlantModel whose code is the following  

package xfuzzy; 

public interface PlantModel { 

 public void init() throws Exception; 

 public void init(double[] state) throws Exception; 

 public double[] state(); 

 public double[] compute(double[] x); 

}  
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The function init() is used to initialize the plant with its default values, and must generate an 
exception when these values are not defined or cannot be assigned to the plant. The function 
init( double[]) is used to set the initial values of the plant status to the selected values. It also 
generates an exception when these values cannot be assigned to the plant. The function 
state() returns the values of the plant status, which correspond to the input variables of the 
fuzzy system. Finally, the function compute (double[]) modifies the plant status in terms of the 
fuzzy system output values. The user must write and compile this class on his own.  

Defining a plant by a Java class offers a great flexibility to describe external systems. The 
simplest way consists in describing a mathematical model of the evolution of the plant from its 
state and the output values of the fuzzy system. In this scheme, the functions init and state 
assign and return, respectively, the values of the inner status variables, while the compute 
function implements the mathematical model. A more complex scheme consists in using a real 
plant connected to the computer (usually by a data acquisition board). In this case, the 
function init must initialize the data acquisition system, the function state must capture the 
current state of the plant, and the function compute must write the action on the data 
acquisition board as well as capture the new status of the plant.  

The configuration of the simulation process also requires the introduction of some end 
conditions. The window for selecting them contains a set of fields with the limit values of the 
simulation state variables.  

 

The initial state of the plant is described by using the following window. It contains a set of 
fields related to the plant variables, which correspond to the fuzzy system input variables.  
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The xfsim tool can provide graphical representations of the simulation process, as well as, 
saving the simulation results into a log file. The Insert key is used to introduce a new 
representation, as usual. This will open a window asking for the type of representation: either 
a log file, or a graphical plot. The window for describing a log file has a field to select the name 
of the file, and some buttons to choose the variables to be saved.  

 

The window for describing the graphical representation contains two pulldown lists to select 
the variable assigned to the X and Y axis, and a set of buttons to choose the representation 
style.   

 

The configuration of a simulation process can be saved to an external file, and loaded from a 
previously saved file. The contents of this file is composed by the following directives:  
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xfsim_plant("filename") 

xfsim_init(value, value, ...) 

xfsim_limit(limit & limit & ...) 

xfsim_log("filename", varname, varname, ...) 

xfsim_plot(varname, varname, style)  

The directive xfsim_plant contains the file name of the Java binary code file describing the 
plant. The directive xfsim_init contains the value of the initial state of the plant. If this directive 
does not appear in the configuration file, the default initial state is assumed. The directive 
xfsim_limit contains the definition of the end conditions, which are expressed as a set of limits 
separated by the character &. The format of each limit is "variable < value" for the upper 
limits, and "variable > value" for the lower limits. The log files are described in the directive 
xfsim_log, which includes the name of the log file and the list of the variables to be saved. The 
graphical representations are defined by the directive xfsim_plot, which includes the names of 
the variables assigned to the X and Y axis, and the representation style. A style value of 0 
means a plot with lines; value 1 indicates a dotted plot; value 2 makes the plot to use squares; 
and values 3, 4 and 5 indicate the use of circles of different sizes.  

The next figure shows an example of a Java class implementing the plant model of a vehicle. 
This model can be connected to the fuzzy System Backward included in the Xfuzzy examples. 
The state of the vehicle is stored in the internal variable state[]. The functions init just assign 
the values to the state components: the first component is the X position; the second is the 
orientation of the vehicle with respect to a reference direction (phi); the third one is the Y 
position and the last one contains the current value of the angle of rotation of the wheels 
(gamma). These components correspond to the input variables of the fuzzy system. The 
function state returns the internal variable values. The vehicle dynamics is described by the 
function compute. The inputs to this function are the output variables of the fuzzy system. So, 
val[0] contains the target value of the variable gamma (gref), while val [1] contains the output 
value of the first rule base (alpha), which is not used in the model. The change in the angle of 
rotation of the vehicle does not occur instantaneously, but has a certain inertia characterized 
by a time constant defined in the model. In each iteration, the new value of the gamma 
variable causes a change in the orientation angle and the position of the vehicle.  

import xfuzzy.PlantModel; 

 

 

public class RomeoModelBack implements PlantModel { 

 private double x; 

 private double y; 

 private double phi; 

 private double gamma; 
 

 public RomeoModelBack() { 

 } 
 

 public void init() { 

  x = 0; 

  phi = 0; 

  y = 0; 

  gamma = 0; 

 } 
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 public void init(double val[]) { 

  x = val[0]; 

  phi = val[1]*Math.PI/180; 

  y = val[2]; 

  gamma = val[3]; 

 } 
 

 public double[] state() { 

  double state[] = new double[4]; 

  state[0] = x; 

  state[1] = phi*180/Math.PI; 

  state[2] = y; 

  state[3] = gamma; 

  return state; 

 } 
 

 public double[] compute(double val[]) { 

  double LAPSE = 0.1; 

  double P_TAU = 0.5;  

  double v = -1.0; 

  double t = 0.0; 

  double gref = 1.0*val[0]; 

  double oldgamma = gamma; 
 

  for(t=0.0; t <= LAPSE; t+=0.001) { 

    x += v*Math.sin(phi)*0.001; 

    y += v*Math.cos(phi)*0.001; 

    phi += v*gamma*0.001; 

    if( phi > Math.PI) phi -= 2*Math.PI; 

    if( phi < -Math.PI) phi += 2*Math.PI; 

    gamma = gref + (oldgamma-gref)*Math.exp(-t/P_TAU); 

    if( gamma > 0.4) gamma = 0.4; 

    if( gamma < -0.4) gamma = -0.4; 

   } 

  return state(); 

 } 

} 

Once the plant model is described, the user must compile it to generate the .class binary file. 
Be aware of the value of the environment variable CLASSPATH, as it must contain the path to 
the interface definition. Hence, CLASSPATH must include the route "base/xfuzzy.jar", where 
base refers to the installation directory of Xfuzzy. (Note: in MS-Windows the path must include 
the route "base\xfuzzy.jar". Be aware of the separator). 

The following graphs show the trajectories followed by the vehicle when parking starts with 
different initial conditions.  
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x = 0, y = 7, phi = 170 

 

x = 6, y = 6, phi = -45 

 

x = -10, y = 3, phi = 0 
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Tuning stage 

The tuning stage is usually one of the most complex tasks when designing fuzzy systems. The 
system behavior depends on the logic structure of its rule base and the membership functions 
of its linguistic variables. The tuning process is very often focused on adjusting the different 
membership function parameters that appear in the system definition. Since the number of 
parameters to simultaneously modify is high, a manual tuning is clearly cumbersome and 
automatic techniques are required. The two learning mechanisms most widely used are 
supervised and reinforcement learning. In supervised learning techniques the desired system 
behavior is given by a set of training (and test) input/output data while in reinforcement 
learning what is known is not the exact output data but the effect that the system has to 
produce on its environment, thus making necessary the monitoring of its on-line behavior. 

The Xfuzzy 3 environment includes four tools for this design stage: xfdm and xftsp are 
knowledge acquisition tools. The first one allows obtaining the structure of inference systems 
used as fuzzy approximators or classifiers, while the second one is specially focused on time 
series prediction applications. xfsl is a parameter adjustment tool based on the use of 
supervised learning algorithms. In supervised learning techniques, the desired behavior of the 
system is described by a set of training (and test) patterns. Supervised learning attempts to 
minimize an error function that evaluates the difference between the actual system behavior 
and its desired behavior defined by the set of input/output patterns. Finally, xfsp is a 
simplification tool that allows reducing the number of membership functions and compacting 
the rules bases of a fuzzy system to facilitate its software or hardware implementation and to 
increase its linguistic interpretability. 

 

 The Knowledge acquisition tool - Xfdm 

The tool xfdm facilitates the identification of fuzzy systems from numerical data using different 
algorithms based on matrix partitioning (Grid Partitioning) or data grouping (Cluster 
Partitioning) techniques. xfdm can be executed from the command line, or through its 
graphical user interface using the "Data Mining" option of the Tuning or the corresponding 
icon in the main window of the environment. 

The main window of xfdm is divided into two parts. The upper part is used to configure the 
identification process: selection of the algorithm, input/output data file, number of inputs and 
outputs, inputs style and fuzzy system style. 

 

The buttons located in the lower part of the window allow, respectively, to load or save a 
configuration file, create the fuzzy system and close the tool's graphical user interface.  
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Algorithms  

xfdm includes different identification algorithms grouped into two categories:   

a)  Structure-oriented algorithms 

These algorithms perform a fixed or variable partition of the universes discourse of the 
input variables and analyze the numerical data that describe the behavior of the system to 
assign a rule for each line of the input file. Subsequently, they resolve the conflicts that may 
have occurred and select the fuzzy system rules based on their activation degrees and the 
configuration parameters defined by the user. xfdm includes three identification algorithms 
that work with fixed partitions (Wang & Mendel, Nauck and Senhadji) and one that includes 
a variable number of partitions (Incremental Grid). Additionally, the "Flat System" option 
allows the generation of fuzzy system specifications with a flat I/O behavior that can be 
useful as input to the training tool or to other Xfuzzy facilities.  

The specific options and parameters of these algorithms are: 

- Nauck: 

- Number of rules: number of rules to identify 
-  Type of selection: “Best rules” or “Best per class” 

- Sendhadji: 

-  Number of rules: number of rules to identify 

- Incremental Grid: 

-  Limit of MFCs, Limit of Rules, Limit of RMSE: the execution of the algorithm ends when 
one of these limits is reached. 

- Learnig option: activated/not activated  

b)  Cluster-oriented algorithms 

xfdm also includes other algorithms to generate a fuzzzy system from a series of data using 
clustering techniques. By grouping sets of points in clusters represented by prototype 
points, this type of techniques allow to considerably reduce the information that the 
algorithm must handle and usually give rise to fuzzy systems with fewer rules. The tool 
includes four algorithms that use a fixed number of clusters (Hard C-Means, Fuzzy C-Means, 
Gustafson-Kessel and Gath-Geva), as well as two algorithms that allow iteratively varying 
the number of clusters until the limit defined by the user is reached (Incremental Clustering 
and ICFA). 

The specific options and parameters of these algorithms are: 

- Incremental Clustering: 

- Neighborhood radius 
-  Max. N. of clusters: maximum number of clusters 

- Fixed Clustering: 

-  Clustering algorithm: Hard C-Means, Fuzzy C-Means, Gustafson-Kessel, Gath-Geva 
-  Number of clusters  
- Limit on iterations 
-  Fuzziness index 
- Limit on cluster variation 
- Learning option: activated/not activated 



   TOC

 62  

- ICFA (Incremental Clustering for Function Approximation): 

-  Number of clusters 
-  Max. Iterations 
-  Fuzziness index 
- Limit on cluster variation 
- Activate migration: activated/not activated 

Style selection  

The graphical user interface for style selection of the system input variables allows to choose, 
jointly for all the variables or independently for each of them, the range, the number and the 
type of membership functions. The available options include piecewise linear, Gaussian and 
spline-based membership functions (free or grouped in families).   

 

On the other hand, the graphical user interface for selection of the fuzzy system style allows to 
choose the conjunctive operator used to implement the connective of antecedents in the 
rules, as well as the defuzzification method. In this last case, the possible alternatives are: 
Fuzzy Mean, Weighted Fuzzy Mean, first order Takagi-Sugeno and Max Label (for fuzzy 
classifiers). 
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Fichero de configuración  

The configuration of an identification process can be saved to and loaded from an external file. 
The content of this file consists of the following directives:  

 xfdm_pattern("file_name") 

 xfdm_inputs(n_inputs) 

 xfdm_outputs(n_outputs) 

 xfdm_input(variable|ANY,min,max,N_MFs,style) 

 xfdm_system(rulebase_name,out_name,and_op,gen,style) 

 xfdm_algorithm(algorithm_name,[value],...) 

The xfdm_pattern directive selects the pattern file used to identify the system. xfdm_inputs 
and xfdm_outputs specify the number of inputs and outputs, respectively. The style of the 
input variables is defined by one or more xfdm_input directives, whose parameters indicate 
the name of the variable ('ANY' for all of the system), the range of values ('0.0, 0.0' if obtained 
from the pattern file), the number of membership functions and their style (0: Free triangles; 
1: Triangular family; 2: Free shouldered triangles; 3: Shouldered-triangular Family; 4: Free 
gaussians; and 5: B-spline family). The xfdm_system directive defines the fuzzy system style, 
including as parameters the name of the rule base, the name of the output variable, the 
operator used as connective of antecedents (0: min; 1: prod), the system generation option (0: 
only identifies the rule base; 1: also generates the structure of the system) and the 
defuzzification method (0: FuzzyMean; 1: WeightedFuzzyMean, 2: Takagi- Sugeno; and 3: 
MaxLabel). Finally, the identification algorithm, as well as its possible parameters, is defined by 
the directive xfdm_algorithm.. 

The following figure shows some examples of fuzzy systems for function approximation 
generated with xfdm.  
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 The Time Series Prediction Tool - Xftsp 

The tool xftsp generates fuzzy inference systems that implement autoregressive models for the 
short- and long-term prediction of time series. To do this, it applies a methodology based on 
the use of nonparametric noise or residual variance estimates (to select the optimal number of 
input variables) in combination with Xfuzzy supervised learning and identification tools (to 
determine the structure of the systems)1.  

This methodology responds to a direct prediction strategy, which implies the construction of 
an autoregressive model for each of the terms of the desired prediction horizon. In each case, 
the optimal subset of inputs is selected a priori by a non-parametric noise estimate (for 
example, the Delta Test). The specification of the fuzzy system corresponding to each 
prediction horizon is then obtained through an iterative process in which successive 
identification and adjustment phases are carried out, increasing the number of linguistic labels 
of the inputs, until the system error enters the previously estimated range. 

xftsp can be executed in graphic mode, using the option "Time Series Prediction" of the Tuning 
menu or the corresponding icon in the main window of the environment, or from the 
command line using a configuration file.  

 

                                                 
1
 F. Montesino, A. Lendasse, A. Barriga  

  Autoregressive time series prediction by means of fuzzy inference  
  systems  using nonparametric residual variance estimation 
  Fuzzy Sets and Systems 2010 
  DOI: 10.1016/j.fss.2009.10.018 

https://doi.org/10.1016/j.fss.2009.10.018
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The graphical user interface of xftsp allows to collect the necessary information to execute the 
tool. This information includes the following items: 

- Series name:  Name of the time series 

- Training file: Training patterns file 

- Test file: Test patterns file 

- Save directory: Directory where the output files are stored  

- Identification algorithm: Algorithm used in the identification phase (xfdm) 

- Optimization algorithm: Algorithm used in the optimization phase (xfsl) 

- NRVE file: Non-parametric residual variance estimation for each time 
horizon 

- Selection file: File of selection of input variables for each time horizon (*) 

- Tolerance: Set estimation used to determine the complexity of the 
fuzzy system as a fixed value or one that increases with the 
prediction horizon 

- Max exploration: Maximum number of membership functions per input 

- Generate optimization logs: Keep the log files generated by the execution of xfsl in the 
optimization phase of all fuzzy systems 

- Keep pattern files: Keep in the directories 'xftsp-step-*' the training (and test) 
pattern files used in the identification and optimization 
phases 

(*) In Xfuzzy, errors are usually normalized against the squared range of the series, so 
the estimations should be normalized accordingly. 

The central area of the xftsp graphical user interface contains four buttons separated by a 
progression bar. The two upper buttons allow loading (Load Configuration) or saving (Save 
configuration) a configuration file. 

The syntax of the different directives that can appear in the configuration file is shown below: 

 

 

 

 

 

 

The number of rows in the NRVE file determines the time horizon to be predicted and, 
therefore, the number of fuzzy systems that will be created. On the other hand, the number of 
columns of the input selection file sets the maximum size of the autoregressors, that is, the 
maximum number of input variables of the fuzzy systems.  

Once the configuration is complete, the Generate models button allows launching the 
generation process of the fuzzy systems that model the time series. Most of the messages 
generated during the execution of the tool are shown in the standard output, that is, the 

 xftsp_series_name("name") 

 xftsp_training_file("file_name") 

 xftsp_test_file("file_name") 

 xftsp_id_algorithm(algorithm_name, value,...) 

 xftsp_opt_algorithm(algorithm_name, value,...) 

 xftsp_nrve("file_name") 

 xftsp_selection("file_name") 

 xftsp_option(tolerance, increment) 

 xftsp_option(max_exploration, max_num_MFs)     

 xftsp_option(generate_optimization_logs) 

 xftsp_option(keep_pattern_files) 
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command window from which Xfuzzy was launched or the xfstp command was executed. 
These messages are also written in a log file, called 'xftsp-run-results.log', which accumulates 
numerous comments associated with the different steps of execution of the tool. When 
executing xftsp from the graphical user interface, the messages related to the loading and 
storage of configuration files, as well as the notification of end of execution are shown in the 
lower area of the interface. The first lines of the log file resulting from an execution of xftsp 
have the following appearance: 

The execution of xftsp also generates a series of directories called 'xftsp-step-*' that contain 
the models (and auxiliary files) corresponding to each prediction horizon. Other files with 
information about the generated systems are also saved in these directories, as well as in the 
main directory.. 

Identification algorithms 

In general, the identification algorithms supported by the tool xfdm can be used by xftsp. Some 
examples are: 

 

Date: Sat Mar 03 08:39:59 CET 2018 

Series name: estsp07 

Training series file: C:\workspace\Ejemplos\Tools\xftsp\estsp07-training.txt 

Test series file: C:\workspace\Ejemplos\Tools\xftsp\estsp07-training.txt 

NRVE file: C:\workspace\Ejemplos\Tools\xftsp\nrve_10 10 

Selection file: C:\workspace\Ejemplos\Tools\xftsp\selection_10 10 10 

-> Step/horizon 1 

Selected 3 variables: 1-3-8 

Training pattern file (after selection): C:\workspace\Ejemplos\Tools\xftsp\xftsp-step-

1\estsp07-training.txt-3i1o-1step---1-3-8 

Test pattern file (after selection): C:\workspace\Ejemplos\Tools\xftsp\xftsp-step-

1\estsp07-test.txt-3i1o-1step---1-3-8 

* Performing identification (with 3 inputs) using Wang & Mendel (Active rule 

extraction) 

Identification finished, identified 6 rules. 

* Performing optimization (with 3 inputs and 6 rules) using RProp 

Optimization finished 

Trn MSE: 1,4906565335E-03, Tst MSE: 1,6805603718E-03 | Threshold: 1,26220182E-03 (1.15 

* 1,0975668E-03) 

* Performing identification (with 3 inputs) using Wang & Mendel (Active rule 

extraction) 

Identification finished, identified 15 rules. 

* Performing optimization (with 3 inputs and 15 rules) using RProp 

Optimization finished 

Trn MSE: 1,2759638533E-03, Tst MSE: 1,5397470334E-03 | Threshold: 1,26220182E-03 (1.15 

* 1,0975668E-03) 

* Performing identification (with 3 inputs) using Wang & Mendel (Active rule 

extraction) 

Identification finished, identified 20 rules. 

* Performing optimization (with 3 inputs and 20 rules) using RProp 

Optimization finished 

Trn MSE: 1,2574012085E-03, Tst MSE: 1,5753594329E-03 | Threshold: 1,26220182E-03 (1.15 

* 1,0975668E-03) 

 

* Results:  

MF & rules &     Trn. MSE   &   Test MSE   &   Trn. MxAE   &    Test MxAE 

2  &   6  & 1,4906565335E-03  & 1,6805603718E-03 & 1,459269682E-01  & 1,5739203918E-01 

3  &  15  & 1,2759638533E-03 & 1,5397470334E-03 & 1,1709453877E-01  & 1,3439983748E-01 

4  &  20  & 1,2574012085E-03  & 1,5753594329E-03 & 1,2528942456E-01  & 1,4363158343E-01 

 

Prediction:  25.098186830201954 

--------------------------------------------------------------------------------------- 

 

-> Step/horizon 2 
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Optimization options 

Getting a proper configuration of an optimization algorithm can be a slow and tedious task. 
Below are some configurations that tend to work well: 

 

Example 

In the examples directory of the Xfuzzy distribution, you can find the configuration and data 
files needed to analyze a time series containing 875 weekly samples of temperatures 
corresponding to the "El Niño-Southern Oscillation" phenomenon, a weather pattern 
consisting of the oscillation of the equatorial Pacific meteorological parameters every certain 
number of years. The data have been divided into two subsets: one of 475 samples, used as a 
training file, and another with the remaining 400 samples, used as a test file. A maximum 
regressor size of 10 and a prediction horizon of 50 has been considered, that is, the last 10 
known values will be used to predict the next 50 values. 

 

 

 

 

 

 

 

 

 

 

To carry out the study, launch the tool from Xfuzzy loading the supplied configuration file or 
execute the command: 

 $ xftsp estsp07_xftsp.cfg 

xftsp_id_algorithm(WangMendel) 

xftsp_id_algorithm(ICFA, 0, 20, 2.0, 0.01, 1)  

xftsp_id_algorithm(CMeans, 0, 10, 2.0, 0.01, 0 )  

xftsp_id_algorithm(HardCMeans, 0, 10, 2.0, 0.01, 0 )  

xftsp_id_algorithm(GustafsonKessel, 0, 10, 2.0, 0.01, 0 )  

xftsp_id_algorithm(GathGeva, 0, 10, 2.0, 0.01, 0 )  

xftsp_id_algorithm(IncClustering, 2, 0.1)  

xftsp_opt_algorithm(Scaled_conjugate_gradient) 

xftsp_opt_algorithm(Rprop, 0.1, 1.5, 0.5) 

xftsp_opt_algorithm(Marquardt, 0.1, 10.0, 0.2) 

xftsp_opt_algorithm(Quickprop, 0.25, 1.25) 

xftsp_opt_algorithm(Backprop_with_momentum, 1.2, 0.2) 

xftsp_opt_algorithm(Simulated_Annealing, 500, 0.5, 100) 

xftsp_opt_algorithm(Blind_search, 5.0) 

xftsp_opt_algorithm(Powell, 0.5, 100) 

xftsp_opt_algorithm(Simplex, 0.1, 1.5, 0.5) 

xftsp_series_name(estsp07) 

xftsp_training_file("estsp07-training.txt") 

xftsp_test_file("estsp07-test.txt") 

xftsp_opt_algorithm(Rprop, 0.1, 1.5, 0.5) 

xftsp_selection("selection_7") 

xftsp_nrve("nrve_7") 

xftsp_option(tolerance,0) 

xftsp_option(max_exploration,15) 

xftsp_option(generate_optimization_logs) 

xftsp_option(keep_pattern_files) 
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 The supervised learning tool – Xfsl 

xfsl is a tool that allows the user to apply supervised learning algorithms to tune fuzzy systems 
into the design flow of Xfuzzy 3 2. The tool can be executed in graphical mode or in command 
mode. The graphical mode is used when executing the tool from the main window of the 
environment (using the option "Supervised learning" in the Tuning menu). The command 
mode is used when executing the tool from the command line with the expression "xfsl file.xfl 
file.cfg", where the first file contains the system definition in XFL3 format, and the second one 
contains the configuration of the learning process (see configuration file below).  

 

The figure above illustrates the main window of xfsl. This window is divided into four parts. 
The left upper corner is the area to configure the learning process. The state of the learning 
process is shown at the right upper part. The central area illustrates the evolution of the 
learning, and the bottom part contains several control buttons to run or stop the process, to 
save the results, and to exit.  

In order to configure the learning process, the first step is to select a training file that contains 
the input/output data of the desired behavior. A test file, whose data are used to check the 
generalization of the learning, can be also selected. The format of these two patterns files is 
just an enumeration of numeric values that are assigned to the input and output variables in 
the same order that they appear in the definition of the system module in the XFL3 
description. This is an example of a pattern file for a fuzzy system with two inputs and one 
output:  

 

                                                 
2
 F. J. Moreno-Velo, I. Baturone, A. Barriga, S. Sánchez-Solano 

  Automatic Tuning of Complex Fuzzy Systems with Xfuzzy 
  Fuzzy Sets and Systems 2007 
  DOI: 10.1016/j.fss.2007.03.006  

https://doi.org/10.1016/j.fss.2007.03.006
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 0.00 0.00 0.5 

 0.00 0.05 0.622459 

 0.00 0.10 0.731059  

 ...    

The log file allows to save the learning evolution in an external file. The selection of this file is 
optional.  

The following step in the configuration of the tuning process is the selection of the learning 
algorithm. xfsl admits many learning algorithms (see section algorithms below). Regarding 
gradient descent algorithms, it admits Steepest Descent, Backpropagation, Backpropagation 
with Momentum, Adaptive Learning Rate, Adaptive Step Size, Manhattan, QuickProp and 
RProp. Among conjugate gradient algorithms, the following are included: Polak-Ribiere, 
Fletcher-Reeves, Hestenes-Stiefel, One-step Secant and Scaled Conjugate Gradient. The second-
order algorithms included are: Broyden-Fletcher-Goldarfb-Shanno, Davidon-Fletcher-Powell, 
Gauss-Newton and Mardquardt-Levenberg. Regarding algorithms without derivatives, the 
Downhill Simplex and Powell's method can be applied. Finally, the statistical algorithms 
included are Blind Search and Simulated Annealing (with linear, exponential, classic, fast, and 
adaptive annealing schemes).  

Once the algorithm is selected, an error function must be chosen. The tool offers several error 
functions that can be used to express the deviation between the actual and the desired 
behavior (see section error function below). By default, the Mean Square Error is selected.  

xfsl contains two processing algorithms to simplify the designed fuzzy system. The first 
algorithm prunes the rules and reduces the membership functions that do not reach a 
significant activation or membership degree. There are three versions of the algorithm: 
pruning all rules that are never activated over a certain threshold, pruning the worst N rules, 
and pruning all rules except the best N ones. The second algorithm clusters the membership 
functions of the output variables. The number of clusters can be fixed to a certain quantity, or 
computed automatically. These two processing algorithms can be applied to the system before 
the tuning process (preprocessing option) or after it (postprocessing option).  

 

An end condition has to be specified to finish the learning process. This condition is a limit 
imposed over the number of iterations, the maximum error goal, or the maximum absolute or 
relative deviation (considering both the training and the test error).  
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The tool allows the user to choose the parameters to be tuned. The following window is used 
to enable or disable the tuning of the parameters. The three upper lists are used to select a 
parameter, or a set of parameters, by selecting the variable type, the membership function of 
that type, and the parameter index in that membership function. The lower list shows the 
actual settings. These settings are interpreted in the order that they appear in the list. In this 
example, all the parameters are first disabled, and then the parameters of the type Tout are 
enabled, so only the parameters of the Tout type are going to be tuned.  

 

A complete learning configuration can be saved into an external file that will be available for 
subsequent processes. The format of this file is described in section configuration file.  

xfsl can be applied to any fuzzy system described by the XFL3 language, even to systems that 
employ particular functions defined by the user. What must be considered is that the features 
of the system may impose limitations over the learning algorithms to apply (for instance, a non 
derivative system cannot be tuned by a gradient-descent algorithm).  

Algorithms 

Since the objective of supervised learning algorithms is to minimize an error function that 
summarizes the deviation between the actual and the desired system behavior, they can be 
considered as algorithms for function optimization. xfsl contains many different supervised 
learning algorithms, which are briefly described in the following.  
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A) Gradient Descent Algorithms 

The equivalence between fuzzy systems and neural networks led to apply the neural learning 
processes to fuzzy inference systems. In this sense, a well-known algorithm employed in fuzzy 
systems is the BackPropagation algorithm, which modifies the parameter values proportionally 
to the gradient of the error function in order to reach a local minimum. Since the convergence 
speed of this algorithm is slow, several modifications were proposed like using a different 
learning rate for each parameter or adapting heuristically the control variables of the 
algorithm. An interesting modification that improves greatly the convergence speed is to take 
into account the gradient value of two successive iterations because this provides information 
about the curvature of the error function. The algorithms QuickProp and RProp follow this 
idea.  

xfsl admits Backpropagation, Backpropagation with Momentum, Adaptive Learning Rate, 
Adaptive Step Size, Manhattan, QuickProp and RProp.  

B) Conjugate Gradient Algorithms 

The gradient-descent algorithms generate a change step in the parameter values that is a 
function of the gradient value at each iteration (and possibly at previous iterations). Since the 
gradient indicates the direction of maximum function variation, it may be convenient to 
generate not only one step but several steps which minimize the function error in that 
direction. This idea, which is the basis of the steepest-descent algorithm, has the drawback of 
producing a zig-zag advancing because the optimization in one direction may deteriorate 
previous optimizations. The solution is to advance by conjugate directions that do not interfere 
each other. The several conjugate gradient algorithms reported in the literature differ in the 
equations used to generate the conjugate directions.  

The main drawback of the conjugate gradient algorithms is the implementation of a linear 
search in each direction, which may be costly in terms of function evaluations. The linear 
search can be avoided by using second-order information, that is, by approximating the second 
derivative with two close first derivatives. The scaled conjugate gradient algorithm is based on 
this idea.  

Among conjugate gradient algorithms, the following are included in xfsl: Steepest Descent, 
Polak-Ribiere, Fletcher-Reeves, Hestenes-Stiefel, One-step Secant and Scaled Conjugate 
Gradient.  

C) Second-Order Algorithms 

A forward step towards speeding up the convergence of learning algorithms is to make use of 
second-order information of the error function, that is, of its second derivatives or, in matricial 
form, of its Hessian. Since the calculus of the second derivatives is complex, one solution is to 
approximate the Hessian by means of the gradient values of successive iterations. This is the 
idea of Broyden-Fletcher-Goldarfb-Shanno and Davidon-Fletcher-Powell algorithms.  

A particular case is when the function to minimize is a quadratic error because the Hessian can 
be approximated by only the first derivatives of the system outputs, as done by the Gauss-
Newton algorithm. Since this algorithm can lead to unstability when the approximated Hessian 
is not positive defined, the Marquardt-Levenberg algorithm solves this problem by introducing 
an adaptive term.  

The second-order algorithms included in the tool are: Broyden-Fletcher-Goldarfb-Shanno, 
Davidon-Fletcher-Powell, Gauss-Newton and Mardquardt-Levenberg.  
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D) Algorithms Without Derivatives 

The gradient of the error function cannot be always calculated because it can be too costly or 
not defined. In these cases, optimization algorithms without derivatives can be employed. An 
example is the Downhill Simplex algorithm, which considers a set of function evaluations to 
decide a parameter change. Another example is Powell's method, which implements linear 
searches by a set of directions that evolve to be conjugate. The algorithms of this kind are too 
much slower than the previous ones. A best solution can be to estimate the derivatives from 
the secants or to employ not the derivative value but its sign (as RProp does), which can be 
estimated from small perturbations of the parameters.  

All the above commented algorithms do not reach the global but a local minimum of the error 
function. The statistical algorithms can discover the global minimum because they generate 
different system configurations that spread the search space. One way of broadening the 
space explored is to generate random configurations and choose the best one. This is done by 
the Blind Search algorithm, whose convergence speed is extremely slow. Another way is to 
perform small perturbations in the parameters to find a better configuration as done by the 
algorithm of iterative improvements. A better solution is to employ Simulated Annealing 
algorithms. They are based on an analogy between the learning process, which is intended to 
minimize the error function, and the evolution of a physical system, which tends to lower its 
energy as its temperature decreases. Simulated annealing provides good results when the 
number of parameters to adjust is low. When it is high, the convergence speed can be so slow 
than it can be preferred to generate random configurations, apply gradient descent algorithms 
and select the best solution.  

Regarding algorithms without derivatives, the Downhill Simplex and Powell's method can be 
applied. The statistical algorithms included are Blind Search and Simulated Annealing (with 
linear, exponential, classic, fast, and adaptive annealing schemes).  

When optimizing a differentiable system, Broyden-Fletcher-Goldarfb-Shanno and Mardquardt-
Levenberg algorithms are the most adequate. When using BFGS, control values (0.1,10) may be 
a good choice. In ML algorithm, control values (0.1,10,0.1) are a good initial option. If it is not 
possible to compute the system derivatives, as in hierarchical fuzzy systems, the best choice is 
to use these algorithms with the option of estimating the derivative. Simulated Annealing is 
only recommended when there are a few parameters to tune and the second order algorithms 
drive the system to a non-optimal minimum.  

Error function  

The error function expresses the deviation between the actual behavior of the fuzzy system 
and the desired one by comparing the input/output patterns with the output of the system for 
those input values. xfsl defines seven error functions: 

mean_square_error (MSE), weighted_mean_square_error (WMSE), mean_absolute_error 
(MAE), weighted_mean_absolute_error (WMAE), classification_error (CE), 
advanced_classification_error (ACE), and classification_square_error (CSE).  

All these function are normalized by the number of patterns, the number of output variables, 
and the range of each output variable, so that the range of the error function is from 0 to 1. 
The first four functions are adequate for systems with continuous output variables, while the 
last three functions are dedicated to classification systems. These are the equation for the first 
functions:  
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MSE = Sum( ((Y-y)/range)**2 )/(num_pattern*num_output) 

WMSE = Sum( w * ((Y-y)/range)**2 )/(num_pattern*Sum(w)) 

MAE = Sum( |((Y-y)/range)| )/(num_pattern*num_output) 

WMAE = Sum( w * |((Y-y)/range)| )/(num_pattern*Sum(w)) 

The output of a fuzzy classification system is the linguistic label that has the greatest activation 
degree. A common way of expressing the deviation of these systems is the number of 
classification failures (classification_error, CE). This is not a very good choice for tuning 
because many system configurations produce the same number of failures. A useful 
modification is to add a term that measures the distance of the selected label to the desired 
one (advanced_classification_error, ACE). These two error functions are not differentiable, so 
they cannot be used with derivative-based learning algorithms (which are the fastest). A better 
choice is to consider the activation degree of each linguistic label as the actual output and the 
desired output as 1 for the correct label and 0 for the others. The error function is computed 
as the square error of this system (classification_square_error, CSE), which is differentiable and 
can be used with derivative-based learning algorithms.  

Configuration file 

The configuration of a tuning process can be saved to and loaded from an extern file. The 
content of this file is formed by the following directives:  

 xfsl_training("file_name") 

 xfsl_test("file_name") 

 xfsl_log("file_name") 

 xfsl_output("file_name") 

 xfsl_algorithm(algorithm_name,value,value,...) 

 xfsl_option(option_name,value,value,...) 

 xfsl_errorfunction(function_name,value,value,...) 

 xfsl_preprocessing(process_name,value,value,...) 

 xfsl_postprocessing(process_name,value,value,...) 

 xfsl_endcondition(condition_name,value,value,...) 

 xfsl_enable(type.mf.number) 

 xfsl_disable(type.mf.number) 

The directives xfsl_training and xfsl_test select the pattern files for training and testing the 
system. The log file for saving the learning evolution is selected by the directive xfsl_log. The 
directive xfsl_output contains the name of the XFL3 file to which the tuned system is saved. By 
default, this file is "xfsl_out.xfl".  

The learning algorithm is set by the directive xfsl_algorithm. The values refer to the control 
variables of the algorithm. Once the algorithm has been chosen, any algorithm option can be 
selected by the directive xfsl_option.  

The error function selection is made by the directive xfsl_errorfunction. The values contain the 
weights of the output variables for weighted error functions.  

The directives xfsl_preprocessing and xfsl_postprocessing specify any process that has to be 
made before or after the system tuning. The different options are: prune_threshold, 
prune_worst, prune_except, and output_clustering. When option output_clustering contains a 
value, it refers to the number of clusters to be created, otherwise the number is computed 
automatically.  
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The end condition, selected by xfsl_endcondition, can be one of the following: epoch, 
training_error, training_RMSE, training_MXAE, training_variation, test_error, test_RMSE, 
test_MXAE, and test_variation.  

The selection of the parameters to be tuned is made by the directives xfsl_enable and 
xfsl_disable. The fields type, mf, and number specify the variable type, membership function 
and index of the parameter. These fields can also contain the expression "ANY".  

Example 

The examples folder in the Xfuzzy distribution contains different e xamples of tuning 
processes. The initial system configuration specified in an XFL3 file, which defines a fuzzy 
system with two input and one output variables. The membership functions of the output 
variable are identical, so that the input/output behavior of this initial specification corresponds 
to a flat surface.  

The following table shows the results obtained in one of the cases, in which was used a 
training file with patterns that describe the surface given by the expression 
z=1/(1+exp(10*(x-y))), after using the Marquardt-Levenberg learning algorithm and 
applying clustering post-processing techniques to reduce the number of functions. 

Initial configuration After learning After clustering 
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 The Simplification tool - Xfsp 

The tool xfsp allows to apply simplification algorithms, both to the membership functions and 
to the rules bases of a fuzzy system, to obtain a simpler description or one that is easier to 
interpret from the linguistic point of view3. The tool can be executed using the "Simplification" 
option in the Tuning menu or the corresponding icon in the main window of the Xfuzzy 
environment.  

Membership functions simplification 

When the Types tab is selected in the tool's graphical user interface, the input and output 
variables of the fuzzy system are displayed on the left side of the window, while the 
membership functions of the selected variable appear on the right side. In this area can also be 
found the Purge, Clustering and Similarity buttons that allow to apply the three available 
simplification processes. 

 

The purge mechanism looks for those membership functions which are not used in any rule 
base and eliminates them. This may happen not only as a consequence of previous 
simplification processes but also when the fuzzy system has been defined from translating 
heuristic knowledge. 

The clustering method uses the Hard C-Means algorithm to search for a small number of 
clusters (prototype membership functions) that allow grouping several of the original 
functions. The clusters are evaluated in the space formed by the different parameters that 
define the membership functions, being possible to apply weights to each one of them. The 
final number of prototypes can be defined by the user or automatically calculated by applying 
different validity indices: Dunn separation index, Davies-Bouldin index and Dunn generalized 
indexes. 

                                                 
3
 I. Baturone, F. J. Moreno-Velo, A. Gersnoviez 

  A CAD Approach to Simplify Fuzzy System Descriptions 
  2006 IEEE International Conference on Fuzzy Systems 
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The third technique that includes xfsp to simplify membership functions is to apply a merging 
process based on the similarity between the different functions. This process iteratively 
searches for the pair of most similar functions and replaces them with a single function if the 
degree of similarity exceeds a threshold defined by the user. The process ends when it is not 
possible to merge more functions. 

The following figure shows the result of applying different simplification processes to the 
membership functions of the output variable of a fuzzy system obtained through supervised 
learning techniques. 

 

Rule bases simplificación 

When the Rules tab is selected in the graphical user interface of xfsp, the different rules bases 
that define the behavior of the fuzzy system are shown on the left side of the window. When 
selecting a rule base, its content appears on the right side of the window, along with the 
buttons corresponding to the four processes that can be applied to the rule set: Pruning, 
Compress, Expand and Tabular Simplification. 

 

The compression method simply combines all the rules that share the same consequent, 
connecting their antecedents by disjunctions ("or" connective). On the other hand, the 
expansion method implements the process complementary to compression. Both methods can 
help the user to better visualize and understand the rule base, but in reality they do not 
perform an effective simplification. Simplification can actually be carried out by the pruning 
method and/or the tabular simplification. 
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The pruning process is usually a preprocessing method applied prior to any simplification. 
Given a set of input data representative of the problem in which the inference system is 
applied (file '.trn'), this process evaluates the degree of activation of the rules to eliminate: (a) 
the n worst rules; (b) all rules except the n best rules; or c) all rules whose degree of activation 
is below a threshold. Both the number n and the threshold are set by the user. Pruning allows 
to reduce the number of rules by selecting the most important in the context of a particular 
application.  

The last of the simplification mechanisms provided by xfsp performs a tabular simplification of 
the rules based on an extension of the Quine-McCluskey algorithm. This method performs an 
ordered linear search to find all combinations of logically adjacent minterms of the n-variable 
function to be simplified. It begins with a list of of all the minterms of the function to later 
obtain successively lists with (n-1)-, (n-2)-, ... variable implicants until no more implicants can 
be formed, thus obtaining the so-named "prime implicants" of the function. The last step is to 
select the minimum number of prime implicants that cover all the minterms. 

The following figure shows the result of applying different simplification processes to the rule 
bases of a fuzzy system for parking control of an autonomous vehicle.  
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Synthesis stage 

The synthesis stage is the last step in the design flow of a system. Its aim is to generate a 
system representation that could be used externally. There are two different types of final 
representations for a fuzzy system: software representations and hardware representations. 
The software synthesis generates a system representation in a high level programming 
language. The hardware synthesis generates a microelectronic circuit that implements the 
inference process described by the fuzzy system.  

Software representations are useful when there are not strong restrictions on the inference 
speed, the system size, or the power consumption. They can be generated from any fuzzy 
system developed in Xfuzzy. On the other hand, hardware representations are more adequate 
when high speed, small area, or power is needed, but for this solution to be efficient some 
constraints has to be imposed on the fuzzy systems, so that the hardware synthesis is not so 
generic as its software counterpart.  

Xfuzzy 3 provides the user with three tools for software synthesis: xfc, that generates an ANSI-
C description of the system, xfcpp, to develop a C++ description, and xfj, that represents the 
system as a Java class. Regarding the hardware synthesis, Xfuzzy 3 includes xfvhdl, a tool that 
generates a synthesizable VHDL description based on a specific architecture for fuzzy systems, 
and xfsg, which generates a Simulink model that can be implemented on FPGAs using the DSP 
development tools from Xilinx).  

 

 The ANSI-C code generation tool – Xfc 

The tool xfc generates an ANSI-C representation of the fuzzy system. The tool can be executed 
from the command line, with the expression "xfc file.xfl", or from the Synthesis menu in the 
main window of the environment. Since the generation of the ANSI-C representation does not 
need any additional information, this tool does not implement a specific graphical user 
interface; only a window will appear that allows selecting the directory in which the generated 
files will be stored.  

Given the specification of a fuzzy system in the XFL3 format, systemname.xfl, the tool 
generates two files: systemname.h, containing the definition of the data structures, and 
systemname.c, containing the C functions that implement the fuzzy inference system.  

For a fuzzy system with global input variables i0, i1, ..., and global output variables o0, o1, ..., 
the inference function included in the systemname.c file is:  

void systemnameInferenceEngine(double i0, double i1, ..., 

double *o0, double *o1, ...); 

The inference function can be used in external C projects by including the header file 
(systemname.h) into them.  
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 The C++ code generation tool - Xfcpp 

The tool xfcpp generates a C++ representation of the fuzzy system. The tool can be executed 
from the command line, with the expression "xfcpp file.xfl" or from the Synthesis menu in the 
main window of the environment. This tool neither has a specificgraphical user interface 
because the generation of the C++ representation does not need any additional information. 
Only a window will appear that allows selecting the directory in which the generated files will 
be stored.  

Given the specification of a fuzzy system in the XFL3 format, systemname.xfl, the tool 
generates four files: xfuzzy.hpp, xfuzzy.cpp, systemname.hpp, and systemname.cpp. The files 
xfuzzy.hpp and xfuzzy.cpp contain the description of the C++ classes that are common to all 
fuzzy systems. The files systemname.hpp and systemname.cpp contain the description of the 
specific classes of the system. The files with '.hpp' extension are header files that define the 
class structures, while the files with '.cpp' extension contain the body of the functions of each 
class. All the files are generated in the output_dir directory, indicated when the tool is 
executed (by default, the same where the systemname.xfl file resides).  

The C++ code generated by xfcpp develops a fuzzy inference engine that can be used with crisp 
values and fuzzy values. A fuzzy value is encapsulated into a MembershipFunction class object.  

class MembershipFunction { 

public: 

 enum Type { GENERAL, CRISP, INNER }; 

 virtual enum Type getType() { return GENERAL; } 

 virtual double getValue() { return 0; } 

 virtual double compute(double x) = 0; 

 virtual ~MembershipFunction() {} 

}; 

The class describing the fuzzy system is an extension of the abstract class 
FuzzyInferenceEngine. This class, defined in xfuzzy.hpp, contains four methods that implement 
the fuzzy inference process.  

class FuzzyInferenceEngine { 

public: 

 virtual double* crispInference(double* input) = 0; 

 virtual double* crispInference(MembershipFunction* &input) = 0; 

 virtual MembershipFunction** fuzzyInference(double* input) = 0; 

 virtual MembershipFunction** fuzzyInference(MembershipFunction* 

&input) = 0; 

}; 

The file systemname.cpp contains the description of the systemname class, which implements 
the fuzzy inference process for the system. Besides describing the four methods of the 
FuzzyInferenceEngine class, the system class contains a method, called inference, which 
develops the inference process with variables instead of arrays of variables. For a fuzzy system 
with global input variables i0, i1, ..., and global output variables o0, o1, ..., the inference 
function is:  

void inference(double i0, double i1, ..., double *o0, double *o1, ...); 



   TOC

 80  

 The Java code generation tool – Xfj 

The tool xfj generates a Java representation of the fuzzy system. The tool can be executed 
from the command line, with the expression "xfj [-p package] file.xfl" or from the Synthesis 
menu in the main window of the environment. When invoked from the command line no 
graphical interface is shown. In this case the Java code files are generated in the output 
directory specified when executing the tool (or in the directory that contains the system file, if 
nothing else is indicated), and a package instruction is added in the Java classes when the -p 
option is used. When xfj is invoked from the Xfuzzy main window, the package name and the 
target directory can be chosen in the tool graphical user interface. 

 

Given the specification of a fuzzy system in XFL3 format, systemname.xfl, the tool generates 
four files: FuzzyInferenceEngine.java, MembershipFunction.java, FuzzySingleton.java, and 
systemname.java. The first three files are descriptions of two interfaces and one class that are 
common to all fuzzy inference systems, while the last one contains the specific description of 
the fuzzy system.  

The file FuzzyInferenceEngine.java describes a Java interface defining a general fuzzy inference 
system. This interface defines four methods to implement the inference process with crisp and 
fuzzy values.  

public interface FuzzyInferenceEngine { 

 public double[] crispInference(double[] input); 

 public double[] crispInference(MembershipFunction[] input); 

 public MembershipFunction[] fuzzyInference(double[] input); 

 public MembershipFunction[] 

fuzzyInference(MembershipFunction[] input); 

}  

The file MembershipFunction.java contains the description of an interface used to describe a 
fuzzy number. It has just one method, called compute, which computes the membership 
degree for each value of the universe of discourse of the fuzzy number.  

public interface MembershipFunction { 

 public double compute(double x); 

}  

The class FuzzySingleton implements the MembershipFunction interface, and represents a crisp 
value as a fuzzy number.  
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public class FuzzySingleton implements MembershipFunction { 

 private double value; 

 

 public FuzzySingleton(double value) { this.value = value; } 

 public double getValue() { return this.value; } 

 public double compute(double x) { return (x==value? 1.0: 0.0); } 

}  

Finally, the systemname.java contains the class which describes the fuzzy system. This class is 
an implementation of the interface FuzzyInferenceEngine. Hence, the public methods which 
develop the inference are those of the interface (crispInference and fuzzyInference). 

 

The software synthesis tool – Xfsw 

xfsw provides a unified command for the C, C ++ and Java code generation tools. It can only be 
used from the command line using the following format: 

xfsw (-ansic|-c++|-java [-p package_name]) file.xfl [output_dir] 

The parameters are equivalent to those used by each tool individually. The directory in which 
the files are generated is indicated by the output_dir parameter or, alternatively, the path of 
file.xfl is used.  
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 The VHDL code generation tool – Xfvhdl 

The tool xfvhdl uses the high level hardware description language VHDL to facilitate the 
hardware implementation, through FPGAs or ASICs, of inference systems described in the 
Xfuzzy environment4. An important feature of this tool is that it allows the direct synthesis of 
complex fuzzy systems, composed by the combination of different inference modules and crisp 
blocks. However, not all XFL3 specifications are able to be implemented in hardware through 
xfvhdl. In particular, fuzzy systems that can be implemented by this tool must use membership 
functions with maximum overlap 2 and use simplified defuzzification methods. 

The graphical user interface of xfvhdl can be executed from the main window of the 
environment, using the "To VHDL" option in the Synthesis menu, or from the command line, by 
means of the expression "xfvhdl -g file.xfl [file.xml]". 

 

The main window of xfvhdl is divided into four parts. The upper area collects information 
about the files and directories involved in the design. The Input XFL file field contains the 
absolute path of the XFL3 specification file selected when the tool is launched. This field is only 
informative, that is, it is not modifiable by the user. The Name for output files field allows to 
configure the prefix of the output files. By default, the name of the input fuzzy system appears, 
although it can be modified by the user. Finally, the Output directory field indicates the 

                                                 
4
 M. Brox, S. Sánchez-Solano, E. del Toro, P. Brox, F. J. Moreno-Velo 

  CAD Tools for Hardware Implementation of Embedded Fuzzy Systems on FPGAs 
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absolute path of the directory where the output files generated by the tool will be located. Its 
default value is the directory that contains the system specification. 

The lower area of the window contains three sections that allow defining different synthesis 
and implementation options. In the Global options section, the user can select to generate 
additional files by checking the Generate complementary files option. He can also select the 
use of simplified components through the Use simplified components option. When this option 
is chosen, the simplified version (without division block) for Fuzzy Mean and Takagi-Sugeno 
defuzzifiers will be included in the VHDL description, as long as the system specification allows 
it (systems with standard membership functions using the product operator as antecedent 
connective; the tool will obviate the use of simplified components in cases where these 
conditions are not verified, even if the option is selected). Finally, when the Files for Hardware 
Simulation option is selected, the tool generates output VHDL descriptions adapted to be 
incorporated into Simulink models through the use of "Black Boxes". The FPGA 
Implementation section collects information regarding implementation options for FPGAs. 
Among them, the type of RAM and ROM to be used (initially the option Automatic appears in 
both, although a drop-down menu also allows selecting the options None, Block or 
Distributed), as well as the family of FPGAs and the device used to implement the inference 
system (the default choice is Zynq xc7z020-clg484-1). Finally, the CAD Tool Options section 
includes a set of options related to CAD tools. Among them: the synthesis tool to be used (the 
default option is Xilinx Vivado, although Xilinx XST can also be selected); the type of 
optimization (the preselected option is Without optimization, but the options Area 
optimization, Speed optimization and Area and Speed optimizations can also be selected in the 
menu); and the effort with which the synthesis is carried out (the Low option is selected a 
priori, although the High option can also be chosen in the drop-down menu). 

The central area of the window is in turn divided into two parts. Initially, the graphical 
representation of the XFL3 specification appears on the right, while, on the left, the different 
knowledge base components are structured in a tree and grouped under RuleBases and 
CrispBlocks categories. When a specific rule base is selected, the content of the right central 
area is replaced by a new interface that allows to define parameters related to system 
dimension. Specifically, the number of bits to encode inputs, output, membership degrees of 
the antecedents, slopes of the membership functions, and weight parameter of the 
defuzzification method (in cases where this exist) can be defined. Also in this area can be 
selected the implementation strategy for antecedents (in memory or by arithmetic calculation) 
and the type of memory used (ROM, RAM or logical block). The tool allows the generation of 
standardized membership functions of triangular, sh_triangular, and trapezoid types by means 
of arithmetic techniques. In the event that input membership functions are not normalized, 
the arithmetic calculation option for antecedents is disabled. For the rule memory can also be 
chosen to implement they with ROM, RAM or logical blocks. In the lower part of this area, 
information extracted from the XFL3 specification related to membership functions and rule 
bases is shown. Specifically, this area includes the values of the number of membership 
functions, breakpoints and slopes for each input, as well as the matrix representation of the 
corresponding rule base. The values shown are for informational purposes only, so they cannot 
be modified. 
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When selecting a crisp block within the tree structure, a single field related to the number of 
bits with which the output of the block is encoded appears in the right central area. 

When all the architectural options and the parameters related to the size of the buses 
corresponding to a rule base have been defined, this configuration must be assigned by means 
of the Apply button (located in the lower part of the window). After that, the red icon that 
appeared next to the knowledge base in the first figure is replaced by the green icon that can 
be observed in the second. Once the information corresponding to all the rule bases and crisp 
blocks of the system has been defined, the component associated to the fuzzy system is also 
identified with a green mark and the buttons Save Configuration, Generate VHDL code and 
Generate and Implement are activated. 

The Save Configuration button allows saving the system configuration through an XML file that 
stores information related to the implementation options of the different components (see 
section Configuration file). Configurations saved with this approach can be loaded later using 
the Load Configuration button or used to run the tool in non-interactive mode (see section 
Execution in command mode).  

Output files 

The Generate VHDL code button generates the VHDL description of the fuzzy system together 
with a testbench file, also described in VHDL, which allows verifying its functionality. The VHDL 
description of the system is generated in a single file composed of the interconnection of 
blocks from the XfuzzyLib cell library . The header of this file also includes a package of 
constants automatically calculated from the information extracted from the knowledge base of 
the inference system and from the parameters and design options introduced by the designer. 
For hierarchical systems, a VHDL description is generated for each rule base, as well as a 
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testbench that allows obtaining the control surface corresponding to each of them. In this 
case, a VHDL file corresponding to the upper level of the hierarchy (top-level) is also generated, 
which describes the interconnection of the different rule bases and crisp blocks that make up 
the system, as well as a testbench that allows to simulate the whole system. 

In addition to the above files, if the selected synthesis tool is Xilinx Vivado, two command files 
with extension ".tcl" are generated. The file ".tcl" facilitates the creation of a Vivado project to 
carry out system verification and implementation tasks. "Script.tcl" allows to automate 
synthesis and implementation processes of fuzzy systems using Xilinx tools in non-project 
mode. 

When the selected tool is Xilinx XST, two additional files with ".prj" and ".xst" extensions are 
generated. The file ".prj" contains the list of the system modules. "Script.xst" contains 
commands that direct the synthesis process with the tool XST. Some of these commands are 
independent of the chosen options, while others depend on them (in particular, the 
commands rom_extract and ram_extract depend on the options chosen in the type of ROM 
and RAM to be used in the FPGA implementation field). 

Finally, if the option to generate complementary files have been selected, a series of files with 
extensions ".dat", ".dat.bin" and ".plt" are generated. These files contain information related 
to the content of the antecedent memories and the rule bases of the system for further study. 
A file ".dat" and another ".dat.bin" are generated for each input variable, which contain the 
data from the antecedent memories (combinations of label-grade-grade values) in decimal and 
binary formats, respectively. The file ".plt" is a Gnuplot command file that allows to graphically 
represent the membership functions. Finally, the file with extension ".dat" includes the 
content of the rule memory. 

During the generation of the files, there may be errors or warnings that will be communicated 
to the user in the Xfuzzy message area. The list of errors, together with the description of the 
causes that motivate them, is illustrated in the error messages section. 

The Generate and Implement button generates the same files as the Generate VHDL code 
button, but also synthesizes the VHDL code and implements it on the Xilinx FPGA specified in 
FPGA implementation, with the implementation options specified in Cad Tools Options, making 
use of Xilinx synthesis and implementation tools. In this phase, the message "There are errors, 
so cannot execute any synthesis tool" or "There are errors, so cannot execute any 
implementation tool" may appear if some error has previously occurred in the creation files 
stage. 

Execution in command mode 

The xfvhdl tool can also be run from a terminal using the following commands: 

• xfvhdl –g <XFL3> [<XML>]: Allows opening the graphical user interface of xfvhdl loading 
the XFL3 specification of a fuzzy system. In case an XML configuration file is specified, 
the indicated configuration file is also loaded. 

• xfvdl <XFL3> [<XML>] [options]: Generates VHDL code for the XFL3 specification with the 
XML configuration file. The [options] field supports the following modifiers:  

 -S:  (generates VHDL code and synthesizes)  

 -I: (generates VHDL code, synthesizes and implements) 

 -L <library>: (use the indicated VHDL library, instead of using the default one). 
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Configuration file 

The configuration of the synthesis process with xfvhdl can be saved in an XML file. The root of 
the configuration file is the label called system, which has three attributes: name, rulebases 
and crisps. The first indicates the name of the system, while the other two indicate, 
respectively, the number of rule bases and crisp blocks. 

 

The file includes three main elements: rulebases, crisps and options. The rulebases tag contains 
information about the rule bases, each of them identified with the rulebase tag. This element 
has as attributes: name, which indicates the name of the rule base; inputs, which indicates the 
number of inputs; and outputs, which indicates the number of outputs. The child elements of 
this tag define each of the parameters of the rule base: bits_input (number of bits for the 
inputs), bits_output (number of bits for the outputs), bits_membership_degree (number of bits 
for the membership degree), bits_MF_slopes (number of bits for slopes), bits_def_weight 
(number of bits for the weight of the defuzzifiers that use this parameter), MFC_arithmetic 
(boolean indicating whether the MFCs were chosen to be implemented by arithmetic circuits 

<?xml version="1.0" encoding="UTF-8" ?>  

<system name="Backward" rulebases="2" crisps="1"> 

 <rulebases> 

<rulebase name="interpolacion" inputs="2"    outputs="1"> 

     <bits_input>8</bits_input>  

     <bits_output>8</bits_output>  

    <bits_membership_degree>8</bits_membership_degree>  

     <bits_MF_slopes>8</bits_MF_slopes>  

     <bits_def_weight>8</bits_def_weight>  

     <MFC_arithmetic>true</MFC_arithmetic>  

     <MFC_memory>ROM</MFC_memory>  

     <RB_memory>ROM</RB_memory>  

    </rulebase> 

<rulebase name="suavizado" inputs="1" outputs="1"> 

   <bits_input>9</bits_input>  

     <bits_output>9</bits_output>  

    <bits_membership_degree>9</bits_membership_degree>  

     <bits_MF_slopes>2</bits_MF_slopes>  

     <bits_def_weight>9</bits_def_weight>  

     <MFC_arithmetic>true</MFC_arithmetic>  

     <MFC_memory>ROM</MFC_memory>  

     <RB_memory>ROM</RB_memory>  

    </rulebase> 

 </rulebases> 

 <crisps> 

  <crisp name="Resta" inputs="2" outputs="1"> 

     <bitsize_output>9</bitsize_output>  

    </crisp> 

 </crisps> 

 <options> 

  <complementary_files>false</complementary_files>  

   <use_simp_components>true</use_simp_components> 

     <hardware_cosimulation>false</hardware_cosimulation> 

    <FPGA_RAM>0</FPGA_RAM>  

    <FPGA_ROM>0</FPGA_ROM>  

    <FPGA_family>Zynq</FPGA_family>  

    <FPGA_device>xc7z020-clg484-1</FPGA_device>  

    <CAD_tool>0</CAD_tool>  

    <CAD_optimization>0</CAD_optimization>  

    <CAD_effort>0</CAD_effort>  

    <outputFile>Backward</outputFile>  

    <outputDirectory>C:\Xfuzzy\Ejemplo\OUT</outputDirectory> 

   </options> 

</system> 
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(true) or by means of memory (false)), MFC_memory (indicates the type of memory chosen for 
the antecedent memory) and RB_memory (indicates the type of memory chosen for the rule 
memory). 

The crisps element appears empty when the system does not include any block of this type. 
Otherwise, each block is defined by a crisp tag that includes the attributes: name, which 
indicates the name of the block; inputs, which indicates the number of inputs; and outputs, 
which indicates the number of outputs. The only parameter that can be defined for this type of 
elements is the number of bits used to encode the output (bitsize_output). 

Finally, the options tag is used to identify the different options that appear at the bottom of 
the graphical user interface of xfvhdl. The child elements of this tag are: complementary_files 
(boolean that indicates whether the user selects the option to generate complementary files), 
use_simp_components (boolean that shows whether the user selects the option to use 
simplified defuzzification methods, FPGA_RAM (number from 0 to 3 which indicates the type 
of RAM used, 0=Automatic, 1=None, 2=Block, 3=distributed), FPGA_ROM (number from 0 to 3 
that indicates the option chosen for the ROM used, 0=Automatic, 1=None, 2=Block, 
3=distributed), FPGA_family (text indicating the family of FPGAs chosen by the user), CAD_tool 
(number 0 or 1 indicating the chosen synthesis tool, 0=Xilinx Vivado, 1=Xilinx XST), 
CAD_optimization (number from 0 to 3 indicating the optimization to be used, 0=Without 
optimization, 1=Area optimization, 2=Speed optimization, 3=Area and Speed optimization), and 
CAD_effort (number 0 or 1 indicating the synthesis effort, 0=Low, 1=High). 
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Error messages 

Error Description 

Can´t create output directory 
Appears when there is a failure to create one of the 
output files 

The maximum overlapping degree must be 
two in variable <i> 

Occurs when in a certain variable there is an overlap 
other than 2, which is not allowed in the architecture on 
which the tool is based 

There isn´t any membership function in 
variable <i> 

Indicates that membership functions have not been 
defined for the variable <i> 

It is not allowed rulebases with more tan two 
inputs and Takagi-Sugeno as defuzzification 
method: <rulebase-name> 

Appears when you try to use Takagi-Sugeno as 
defuzzifier in a system with more than two inputs 

Error in rule: <FLC-name> 
Occurs when there is an error in a rule of an inference 
module   

It is not allowed rulebases with more tan one 
output: <rulebase-name> 

Occurs when the rule base has more than one output 

No prefix file valid. By default 
<OUTPUT_FILE_DEFAULT> 

Indicates that the default prefix will be used for output 
files because the defined one is not valid 

AND operation not valid. Will be used 
Minimum by default 

Indicates that the Minimum connective will be used 
because the AND operator that has been chosen is not 
supported 

Families of Membership Functions not 
allowed 

Occurs when you try to use membership functions or 
families of membership functions that are not supported 

The xml file is not correctly defined Appears when an erroneous XML file is used 

Exception in defuzzification method: <FLC-
name> 

Appears when there is some incompatibility between the 
tool and the defuzzifier used in the inference module 

The bitsize for membership function slope is 
too short, you must resize it or choose 
memory for the MFCs in <FLC-name> 

Occurs when not enough bits have been assigned to 
encode the slopes of membership functions  
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 The SysGen model generation tool – Xfsg 

The xfsg hardware synthesis tool (Xfuzzy to System Generator) allows the automatic 
conversion of the XFL3 specification of a hierarchical fuzzy system, consisting of the 
combination of different inference modules and crisp blocks, into a Simulink model that can be 
simulated in the MATLAB environment and implemented on Xilinx FPGAs5. However, not all 
XFL3 specifications are likely to be implemented through xfsg. In particular, fuzzy systems that 
can be implemented by this tool must employ functions or families of triangular membership 
functions with overlapping degree 2 and use simplified defuzzification methods. 

The graphical user interface of xfsg can be invoked from the main window of the Xfuzzy 
environment, using the "To Sysgen" option in the Synthesis menu, or through the 
corresponding icon of the icon bar. The main window of xfsg is divided into five parts: a zone 
with information on the location and the name of the used files, a tree structure that shows 
the rule bases and crisp blocks that make up the system, an area that initially shows the 
interconnection of the different system components, a zone of global options, and a series of 
buttons located in the lower part of the window. 

  

The zone of information about files and directories is divided into three fields. The Input XFL 
file field contains the absolute path of the XFL3 specification file selected when the tool is 
launched. This field is informative, it can not be modified by the user. The Name for Output 
files field allows you to configure the prefix of the xfsg output files. By default, the name of the 
input fuzzy system appears. Finally, the Output directory field indicates the absolute path of 
the directory where the output files generated by the tool will be located. In this case, the 
directory that contains the system specification appears by default.  

The upper area of the window also includes a button (identified by the text XFSG) that, when 
pressed, displays a dialog box listing the different operators, defuzzification methods, types of 
membership functions and crisp blocks that may appear in fuzzy systems synthesized by the 

                                                 
5
 S. Sánchez-Solano, E. del Toro, M. Brox, P. Brox, I. Baturone 

  Model-Based Design Methodology for Rapid Development of Fuzzy Controllers on FPGAs 
  IEEE Transactions on Industrial Informatics 2012 
  DOI: 10.1109/TII.2012.2211608 

https://doi.org/10.1109/TII.2012.2211608
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tool. These functions are defined in what is called the "xfsg package" in Xfuzzy terminology. To 
the right of the button is a text that advises the user to use only the functions included in this 
package to ensure that no problem will occur when implementing the system. 

In the left central zone of the window the tree structure of the fuzzy system is shown, with the 
elements that compose it grouped under the categories RuleBases and CrispBlocks. Initially, or 
whenever the top level of the system specification is selected, a window with the components 
that make up the system and its interconnection appears in the right area. When a specific rule 
base is selected within the RuleBases category, the interface shown in the following figure 
appears in this zone, allowing to define the different parameters that dimension the inference 
module. Specifically, can be defined the number of bits used to encode inputs, output, 
antecedent membership degrees, and slopes of the membership functions. Also in this zone 
are displayed certain values calculated from the system specification. Specifically, the number 
of membership functions and the values of the breakpoints and slopes for each input, as well 
as the matrix representation of the corresponding rule base. 

When a crisp block is selected in the tree structure, the right middle part of the interface 
shows a single field to be filled relative to the number of bits defined for the output of the 
block. 

 

When all the parameters related to the rule base or the crisp block have been configured, it is 
necessary to press the Apply button to save the changes (otherwise the information entered in 
the form will be lost). After that, the red icon that appeared initially next to the knowledge 
base is replaced by the green icon shown in the figure. When the parameters of all the rule 
bases and crisp blocks that make up the system have been defined, a green icon appears next 
to the top level of the system specification and the Save Configuration and Generate Files 
buttons in the lower area of the graphical user interface are enabled. 

The Save Configuration button allows to save the system configuration through an XML file 
that stores information relative to the implementation options of the different components of 
the system (see Configuration file section. The configurations saved by this option can be 
loaded at a later time using the Load Configuration button. 
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Before clicking the Generate Files button, the user can configure the options that appear in the 
Global Options zone of the graphical user interface. The functionality of each of the options is 
as follows: 

• Include Rule’s Confidence Factors: When this option is activated, an array with the 
degree of certainty of the rules will be included in the ".m" output file for each of the 
system rule bases. This option is contemplated in the XFL3 specification language 
although it is not currently used for hardware implementations of inference systems. 

• Generate txt file: When activated, a ".txt" file containing textual information about the 
structure of the system will be created. 

• Generate Simulink model: If this option is activated, the ".mdl" file corresponding to the 
Simulink model of the fuzzy system will be created. 

• Use Simplified Components: If this option is activated, simplified components will be 
used whenever possible, that is, when the defuzzification method is Fuzzy Mean or 
Takagi-Sugeno, the antecedent connective is the product operator and the rule base is 
completely specified. 

Output files 

Once the parameters of the different system components and the global options have been 
defined, the Generate Files button can be pressed to generate the following files in the 
indicated output directory: 

• <FLC>.m is a MATLAB ".m" file that contains the initialization of the variables of each of 
the XfuzzyLib library blocks that are used to implement the fuzzy system. This file is 
always generated, independently of the options chosen in the Global Options zone. 

• <FLC_aux>.mdl contains a Simulink model of the fuzzy system that uses the modules 
included in the XfuzzyLib library. 

• <FLC>.txt contains a text description of the inputs and outputs of each rule base and 
crisp block. It also includes the component of the XfuzzyLib library used. If such 
component does not exist, it is specified with null. 

Configuration file 

The configuration of the synthesis process with xfsg can be saved in an XML file to be retrieved 
at a later time. It must be taken into account that the syntax of the configuration file can 
change in successive Xfuzzy versions and that only configuration files generated by the current 
version can be loaded, So the old XML files must be adapted to the right format by adding the 
new tags. 

The appearance of the configuration file reflects the tree structure that represents the system. 
The root of this file is the label called system, which has three attributes: name, rulebases and 
crisps. The first one indicates the name of the system, while the other two indicate the number 
of rule bases and crisps blocks, respectively. (If the system does not contain any crisp blocks, 
this attribute does not appear). 

The file includes three main elements: rulebases, crisps and options. The rulebases tag contains 
information about the rules bases, each of them identified by a rulebase tag. This element has 
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as attributes: name, which indicates the name of the rule base; inputs, which indicates the 
number of inputs; and outputs, which indicates the number of outputs. The child elements of 
this tag define each of the parameters of the rule base: bits_input (number of bits for inputs), 
bits_output (number of bits for outputs), bits_membership_degree (number of bits for 
membership degree) and bits_MF_slopes (number of bits for slopes). 

The crisps element appears empty when the system does not include any block of this type. 
Otherwise, each block is defined by a crisp tag that includes the attributes: name, which 
indicates the name of the crisp block; inputs, which indicates the number of inputs; and 
outputs, which indicates the number of outputs. The only parameter that can be defined for 
this type of elements is the number of bits used to encode the output (bitsize_output).  

 

Finally, the option tag is used to identify the different options that appear in the Global 
Options and Files and directory information sections of the xfvhdl graphical user interface. The 
child elements of this tag are: include_rule_confidence_factor_mfile, gen_txtfile, gen_ 

simmodel, use_simp_components, outputFile and outputDirectory. The first four admit a 
Boolean value (true or false) that indicates the activation or not of the corresponding option. 

The saved configurations can be subsequently loaded using the Load Configuration button, 
without the need to enter all the values again. 

 

<?xml version="1.0" encoding="UTF-8"?> 

<system name="Backward" rulebases="2" crisps="2"> 

 <rulebases> 

  <rulebase name="interpolacion" inputs="2" outputs="1"> 

   <bits_input>10</bits_input> 

   <bits_output>10</bits_output> 

   <bits_membership_degree>10</bits_membership_degree> 

   <bits_MF_slopes>10</bits_MF_slopes> 

  </rulebase> 

  <rulebase name="suavizado" inputs="1" outputs="1"> 

   <bits_input>10</bits_input> 

   <bits_output>10</bits_output> 

   <bits_membership_degree>10</bits_membership_degree> 

   <bits_MF_slopes>10</bits_MF_slopes> 

  </rulebase> 

 </rulebases> 

 <crisps> 

  <crisp name="delay" inputs="1" outputs="1"> 

   <bitsize_output>10</bitsize_output> 

  </crisp> 

  <crisp name="Resta" inputs="2" outputs="1"> 

   <bitsize_output>10</bitsize_output> 

  </crisp> 

 </crisps> 

 <options> 

  <include_rule_confidence_factor_mfile>false</include_rule_confidence_factor_mfile> 

  <gen_txtfile>false</gen_txtfile> 

  <gen_simmodel>true</gen_simmodel> 

  <use_simp_components>true</use_simp_components> 

      <outputFile>Backward</outputFile> 

      <outputDirectory>C:\Xfuzzy\examples\Tools\xfsg\OUT</outputDirectory> 

 </options> 

</system> 
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 Mensajes de error 

If an error or warning occurs during the generation of the xfsg output files, the user will be 
notified in the Xfuzzy message area. The list of possible errors together with the description of 
the causes that motivate them is illustrated in the following table. 

Error Description 

Can´t create output directory 
Appears when the tool cannot create the directory 
indicated as output 

There isn´t a Simulink component to this rulebase. 
You must creat it !!! 

Occurs when there is no prototype architecture 
within XfuzzyLib to implement one of the system 
rule bases 

You can´t use a simplified component 
Occurs when the Use Simplified Components 
option has been selected, but a rule base cannot 
use the simplified component  

Invalid membership function to calculate the weight 
of the rules 

Appears when the Weighted Fuzzy Mean 
defuzzifier is used and the second characteristic 
parameter of these methods is missing in the 
definition of the output membership functions.  

Membership functions incorrect for inputs 

Appears when a type of membership function that 
is not allowed is used. The tool supports 
normalized free triangles and families of triangles, 
where the first and/or the last element can be 
trapezoids  

The rulebase is not complete 
Occurs when the consequent is not defined for all 
the possible combinations of input labels  

Invalid name system, Invalid name rulebase, 
Invalid name crisp 

Occurs when a configuration file is loaded and the 
names of the rule bases and crisp blocks or the 
system name do not correspond to those that 
appear in the Xfuzzy specification  

Invalid rule 
Indicates that a rule includes some operator that 
has not been taken into account within the tool 
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