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Spike-Based Vision Processing. Seeing without Frames
Where are we and where should we go?
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  I. INTRODUCTION. THE POWER OF SPIKE-BASED
COMPUTING

Conventional vision sensing and processing is based on
capturing sequences of still frames and process them (or a
subset of them) one by one. For sophisticated vision processing
usually a complicated sequence of 2D operations is required:
different convolution operations, edge detections and
extraction, computation of orientations, grouping of segments,
contour detections and segmentations, morphological
operations, object recognition. Each of these operations are
computationally expensive since they are applied on all pixels
of the captured and processed images.

The vision system of living animals does not operate on
acquiring and processing sequences of still frames. Biological
vision systems exploit spike-based processing. Also, biological
brains are made with a slow ‘technology’ which uses neurons
whose response times are in the order of milliseconds.
Nonetheless, the computational power of biological brains
overwhelmingly outperforms present day fastest computers for
tasks like vision (or sensory processing in general). The reason
for this could be, on one side the massive parallelism and high
number of processing units, but on the other side could also be
justified by a different type of visual information coding,
transmission and computation, much more efficient than frame
based processing.

In the already concluded european project CAVIAR1 (IST-
2001-34124, www.imse.cnm.es/caviar) we have performed
preliminary explorations of the powerful principles of vision
sensing and processing using spiking events, through the use of
the incipient AER (Address Event Representation) technology.

Biological cortical structures are composed of a small
number of processing layers (no more than 10), as shown in
Fig. 1. Each neuron in a layer connects to a ‘projection field’ in
the next layer. Each connection in the projection field has a
given ‘strength’ or ‘weight’, and the set of weights of the
projection field is fixed for a given layer (it does not change
with position of sending neuron). Consequently, this is
mathematically equivalent to convolution operations, where the
kernel of the convolution is the set of weights of the projection
field. In the topology of Fig. 1, electrical spikes are sent from
neurons in a layer to the neurons in the next layer through their
respective projections fields. Spikes are asynchronous, and
each neuron in a layer decides when to send a spike, depending
on the history of spikes it has received. Therefore, in such a

1. From June 2002 through November 2006.
cortical structure a wavefront of spikes, from the first layer (the
sensing layer) to the last layer (the result layer), crosses the
layers while performing complex operations, transformations,
and recognition. And this can be very fast, even if the speed of
one particular processing element (a neuron) is small.

As an illustration, consider the multi-layer system shown
in Fig. 2. This is a very simplified version of a neocognitron [1]
type of structure for character recognition. The neocognitron
implements sequences of convolutions. In this particular case,
it is designed to distinguish between characters ‘A’ and ‘H’,
which can be of different sizes and shapes (slight
deformations). The input consists of a sensing retina with
spiking outputs (AER) of 16x16 pixels. This retina could be of
the type reported in [2]. The pixels of the retina will fire either
one single spike or none, depending on whether they are part of
the stimulus character (either ‘A’ or ‘H’). The boxes named
‘ki’, ‘pi’, ‘U’, and ‘C’ are 16x16 pixel AER convolution
processors [3], which have been programmed with the kernels
shown in Fig. 3. Kernel ‘U’ is not shown because it is the
unitary kernel (size 1x1). Each pixel in a convolution processor
is an integrate-and-fire neuron which integrates the incoming
events and generates an output spike when the integral reaches
a threshold. Boxes ‘Sp’ are splitters, which copy their input

Fig. 1: Illustration of projection field concept in the brain.
Each neuron in one layer connects to a projection field of
neurons in the following layer. The weights of the
connections follow a pattern which is independent of
neuron position within a sending layer. Consequently, this is
like applying a convolution from layer to layer.
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Fig. 2: Illustration of a multi-chip multi-layer AER convolution processing systems to distinguish between
handwritten characters ‘A’ and ‘H’. This system is loosely inspired in the neocognitron architecture.
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Fig. 3: Kernels used for the different convolutions in Fig. 2. The bar to the right side of each kernel shows the
gray scale coding of the kernel value. For each kernel ‘white’ is assigned to its maximum value and ‘black’ to its
minimum. Kernel values are normalized with respect to the threshold of the integrate-and-fire circuit. For
example, if kernel value is ‘1’ then one single positive event for this pixel would produce an output event. If
kernel value is 0.5, then two positive events would be needed for an output event to be generated.
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Fig. 4: Timing of the output events produced by the different convolution stages. Vertical axes represent pixel
number in the 16x16 array (from 0 to 255), and horizontal axes are in µs. The left side corresponds to the case of
input stimulus ‘A’, while the right hand side corresponds to input stimulus ‘H’.

events on different output nodes. Boxes ‘M’ are mergers,   II. CAVIAR DEVELOPMENTS ON AER SPIKING

which sequence input events coming from separate nodes onto
a single output node. Other blocks are possible, like mappers,
which perform transformations on the events. This is the case
of the L/R block, which performs a left/right mirror operation
on the events. The resulting flow of events on the different
nodes can be seen in Fig. 4, for the cases of presenting either a
character ‘A’ or ‘H’ at the input. Horizontal axes represent
‘time’ in micro-seconds. In this example, each block in Fig. 2
introduces a conservative delay of 100ns. By looking at the
timing in Fig. 4, one can see that the delay between input
stimulus presentation and correct output recognition is around
3µs, although 13 convolutions have been performed, some of
them with kernel sizes of up to 16x16. Such performance
cannot be achieved with any present-day computing hardware,
not even with very specialized digital convolution processors.
For example, Öwall et al. [4] have reported a dedicated
convolution processors which can do 15x15 kernels on images
of size 256x256 in 55ms. Scaling this down to images of size
16x16 results in a delay of 215µs for one single convolution.

Furthermore, when scaling up a structure like the one
shown in Fig. 2, for example to handle a larger alphabet, what
happens is that the number of blocks per layer grows, but not
much the total number of layers. Consequently, the global
computational delay will not grow significantly. For example,
the handwritten character recognition system reported in [1] is
composed of 8 layers with a total of 376 blocks, and is capable
of recognizing 35 different handwritten alphanumeric
characters. The expected computational delay for such a
system would be of the order of twice that of Fig. 2, since the
number of layers is twice, and the expected number of spikes
per node should be similar.
HARDWARE FOR VISION

In the EU funded research project CAVIAR (Convolution
AER Vision Architecture for Real Time), four different
european research groups joint during 4.5 years (June 2002
through November 2006) to develop chips and PCBs for
demonstrating a simple multi-chip multi-stage spiking vision
sensing/processing/actuating AER based system. The structure
of the system is shown in Fig. 5. It consists of:

1.- A motion sensing retina (temporal contrast) with AER
output [2].
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Fig. 5: AER Vision System developed in the CAVIAR
project. It consists of a temporal contrast retina with AER
output, followed by an array of AER convolution chips
with programmable kernels of arbitrary shape and size,
followed by a 2D AER Winner-Takes-All position and
feature competition chip, followed by an AER trajectory
learning/classification stage. In CAVIAR the system is
configured to detect and follow balls. The control stage at
the end provides control signals to move the retina
towards the moving balls.
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Fig. 6: Experimental setup of multi-layered AER vision system for ball tracking (white boxes include custom designed chips, blue boxes are
interfacing PCBs). (a) block diagram, (b) photograph of setup, (c) details of mirrors.
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Fig. 7: AER flow monitored on different nodes of the CAVIAR Vision System. (a) 128x128 pixel output of
temporal contrast retina. (b) 64x64 pixel output of convolution chips. (c) 32x32 pixel output of WTA chip.
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2.- A set of AER convolution chips [3] with programmable
kernels of arbitrary shape and size (up to 32x32).
Convolution chips will be programmed to detect different
features, and features of different scales. In the CAVIAR
demonstrator, only one feature was used (a circular
object) with up to four different sizes.

3.- A 2D AER Winner-Takes-All (WTA) chip [5] which for
each convolution output (feature and scale) will detect its
maximum, and from all maximums will select the
absolute maximum.

4.- An AER trajectory learning/classification stage [6],
which first produces delayed versions of the WTA
outputs, which are then fed to an associative learning/
classification AER chip.

5.- Besides these chips, a rich set of AER chip-computer and
chip-chip interfaces have been developed based on
FPGAs [7]-[8], for (1) monitoring AER traffic of AER
links and visualize them in real time on computer
screens, (2) generating synthetic AER traffic from a
computer and inject it as input to an AER stage, (3)
remap events going from one chip to another, (4) log and
replay events, and (5) adapt the AER signals for the
(mechanical) control of the retina.

A preliminary version of the CAVIAR system was reported at
the NIPS 2005 conference [9]. More information, including
publications and videos, can be retrieved from the project web
site at http://www.imse.cnm.es/caviar. 2

The final CAVIAR demonstration system could
discriminate and track balls of different sizes. A block diagram
of the complete system is shown in Fig. 6(a), and a photograph
of the complete experimental setup is given in Fig. 6(b). The

2. The project full Final Report can be downloaded from ‘Restricted Area2’
after receiving username and password from the project coordinator.
complete chain consisted of different AER modules (chips and
PCBs), all numbered in Fig. 6: (1) The rotating wheel stimulus.
(2) Two moving mirrors for changing the visual direction of the
retina. (3) The retina. The retina looked at a rotating disc with
figures on it. (4) An AER monitor PCB which sends copies of
the events to a computer for visualization purposes. (5) A
USB-AER board as mapper to reassign addresses and
eliminate the polarity of brightness change. (6) The
convolution-PCB, which includes four 32x32 pixel convolution
chips, an AER splitter, and an AER merger. The four chips can
be programmed to operate as a single convolution processor of
64x64 pixel programmed with a unique kernel, or they can be
programmed as four independent convolution processors of
32x32 pixels each with an independent kernel. (7) An AER
monitor. (8) An AER mapper. (9) A PCB containing the ‘object
chip’ which performs a winner-takes-all operation on the flow
coming from the convolutions. (10) Another AER monitor.
(11) A microcontroller progammed to control the mirrors in
such a way that the figures detected by the visual chain will be
centered in the visual field. (12) The output of the ‘object chip’
is transformed using a mapper (12) and fed to a delay line chip
(13), the outputs of which are fed through a mapper (14) to a
learning (15) chip.

The system retina looks at a rotating disk which has black
figures drawn on it: two circles of different sizes and one or
two rectangles. The retina senses moving edges. A monitor
PCB collects the events, which can be seen (for a snapshot) in
Fig. 7(a). The retina has 128x128 pixels. The convolution chips
‘sees’ all retina pixels but only provides output for the central
64x64 pixels. The kernel was programmed to follow the small
size circle, and the output of the convolution stage can be seen
in Fig. 7(b). This output is mapped from a 64x64 space to a
32x32 one, and processed by the WTA chip, which filters out
noise, and gives clear strong events for the central coordinates
of the small circle. This is shown in Fig. 7(c). The AER output
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of the WTA is used to act on two servo motors which act on
two orthogonally controlled mirrors (see Fig. 6(c)) which
change the angle of view of the retina. The system keeps the
small circle centered on the visual field. Alternatively, another
non-mechanical servo mechanism was developed, which
changes the angle of view of the retina by introducing a
controlled offset directly on the retina output events. These
offsets are introduced by means of an AER mapper after the
retina. This fully electronic means of actuating rendered much
faster response capabilities, since now there were no
mechanical parts involved (servos nor mirrors).

  III. CONCLUSIONS AND FUTURE WORK

CAVIAR has demonstrated the viability and high potential
of AER based multi-chip and multi-layer bio-inspired cortical-
like spike-based (vision) sensing and processing systems. So
far, only a few AER building blocks have been reported (by the
CAVIAR consortium and other researchers world wide). There
are AER sensing retinae for contrast and motion. CAVIAR has
developed for the first time a fully programmable AER
convolution chip without any restriction on kernel shape nor
size. CAVIAR has also developed a 2D feature competition
AER chip. CAVIAR has developed an associative learning/
classification AER chip. And CAVIAR has also developed a
powerful set of AER chip-chip and chip-computer interfaces.

But CAVIAR has also managed to open a quite new way
of conceiving very powerful, compact, sophisticated, and
impressively fast (vision) sensing and processing hardware
systems. CAVIAR has demonstrated that it is viable to work
towards a computing paradigm based on what is known and
what is yet to be discovered about biological brains and cortical
structures. At this moment, future developments towards the
consolidation of this bio-inspired computing paradigm, should
address the following three aspects:

1) A Theoretical Driven Aspect: where research is
performed towards developing a theory on how to
assemble individual components, how to adjust their
parameters and interconnections, to perform a specific
desired functionality. Are new AER components required?
How can global learning paradigms be introduced to train
parameters? For the individual AER components, which
parameters should be adjustable and which should be their
ranges? In this respect, it would be interesting to develop a
high-level behavioral simulator for such systems, which
should be open enough to conceive new AER components,
but specific enough to model non-idealities of the already
available components. For this theory driven study, we
should take into account what is already known in
conventional image processing using convolutions: texture
analyses, convolution based segmentations, wavelets for
image processing, convolution neural networks (of which
the neocognitron is a particular case and precursor), the
work developed at Boston university on BCS (Boundary
Contour System) which uses a sophisticated structure of
convolutions for segmentation, and many others ... and try
to adapt them to spike based processing.

2) A Technological Driven Aspect. It is clear that for
building realistic cortical-like processing architectures, one
will require a relative large number of individual
components. The CAVIAR demonstrator, which can be
considered a very simplistic single feature vision systems
uses 8 AER chips plus 9 AER interfaces (see Fig. 6). The
simplified neocognitron system in Fig. 2 uses 13
convolution processors plus 8 chip-chip interfaces, plus the
sensor (monitors are not counted). A realistic neocognitron
system, like the one described in [1], would use 8 cortical
layers containing a total of 376 convolution blocks. In
order to develop a reliable, robust, and feasible AER
infrastructure that would allow researchers to ‘play’ with it
and test realistic cortical structures, it should be conceived
to be capable of hosting hundreds (or thousands) of
individual components. It will be mandatory to miniaturize
individual components to sizes of a few cms, which could
be mounted and freely interconnected on some kind of
mother-boards. Motherboards should be capable of hosting
a high number of components (in the order of hundreds),
they should be of compact size (like a laptop computer),
and should be stackable. The infrastructure should be
sufficiently open, so that as components are improved or
newly conceived ones become available, compatibility is
guaranteed.

3) An Applications Driven Aspect. As the theory develops
and the technology becomes more efficient and powerful,
the possible range of applications in real world problems
will grow and grow as well. However, we believe it is
crucial to start focusing on specific possible applications
for which this spiking computing paradigm can already be
applied. Working on specific applications and problems is
an efficient catalyst which helps in developing the previous
two aspects of theoretical and technological developments.
At this point in time, it will be very beneficial to identify
one, two or three applications which would drive the whole
research. Applications should be selected based on difficult
problems to solve with present state-of-the-art computing
paradigms and hardwares. They should combine both, high
speed requirements and heavy computational loads. Also,
applications demanding compactness and low power
solutions, while requiring sophisticated (vision)
processing, could be interesting to consider.
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