
A Hardware/Software Framework for Real-time
Spiking Systems

Matthias Oster, Adrian M. Whatley, Shih-Chii Liu, and Rodney J. Douglas

Institute of Neuroinformatics, Uni/ETH Zurich
Winterthurerstr. 190, 8057 Zurich, Switzerland

mao@ini.phys.ethz.ch

Abstract. One focus of recent research in the field of biologically plau-
sible neural networks is the investigation of higher-level functions such
as learning, development and modulatory functions in spiking neural
networks. It is desirable to explore these functions in physical neural
network systems operating in real-time. We present a framework which
supports such research by combining hardware spiking neurons imple-
mented in analog VLSI (aVLSI) together with software agents. These
agents are embedded in the spiking communication of the network and
can change the parameters and connectivity of the network. This new
approach incorporating feedback from active software agents to aVLSI
hardware allows the exploration of a large variety of dynamic real-time
spiking network models by adding the flexibility of software to the real-
time performance of hardware.

1 Introduction

Much recent research in biologically plausible, spiking neural networks focuses
on the dynamic properties of network models such as learning algorithms based
on synaptic plasticity and global reward signals, development of connectivity,
and modulatory functions such as gain control. It is desirable to explore such
properties in a physical system in real-time: first, because such a system forces
the model to include the real-time timing properties that are important for
biological systems; and second, only a system that interacts with its physical
environment can demonstrate that the model being studied works correctly un-
der real-world conditions. In order to achieve this real-time behaviour, aspects
of network models are often implemented in hardware [1].

We present a framework that allows the exploration of the dynamic properties
of network models in real-time neural networks by combining hardware spiking
neurons and software agents. Local analog and continuous-time computation is
performed in the hardware, while higher-level functionality is implemented in
software. By higher-level functionality we understand whatever algorithms are
not implemented in the currently available hardware, e.g. learning algorithms
based on synaptic plasticity and global reward signals, development of connec-
tivity, and modulatory functions such as gain control. This new approach allows



a wide variety of algorithms to be tested quickly and will enable real-time sys-
tems with large computational power to be assembled.

Several projects have focused on combining hardware based spiking neu-
rons with dynamically reconfigurable connectivity: the Silicon Cortex (SCX)
project [2] proposed connecting multiple chips using spiking communication and
already incorporated the possibility of building integrated hardware and soft-
ware models of the kind we propose here, although no such models were actually
implemented at that time due to the presence of a critical bug in the host com-
munication channel of the SCX. Similar systems are used by various groups.
The IFAT system [3] aims for a similar goal to that of this work, however, we
separate the hardware and software parts to achieve greater flexibility, higher
performance and easier implementation of the algorithms (e.g. in Matlab).

2 System Architecture

Hardware systems implementing the analog and continuous-time computation
performed by neurons and synapses in transistor circuits have long been a subject
of research and many examples can be found in the literature, e.g. [4]. The
circuits approximate models of biological neurons which are then integrated in
large arrays on a chip using Very Large Scale Integration (VLSI).

The connectivity between neurons is implemented by the transmission of
spikes over a multiplexed bus using the address-event representation (AER) pro-
tocol [5]. Each spike is represented by the address of the source neuron or the
receiving synapse and is transmitted asynchronously. A mapper translates the
addresses of the sending neurons to lists of receiving synapse addresses using
a look-up table, thus allowing for arbitrary intra- and inter-chip connectivity
between neurons. Various networks and input sensors can be combined to form
a real-time multi-chip system (see Fig. 1). A monitor translates spikes from
hardware to software, while a sequencer provides the reverse translation. The
mapper, monitor and sequencer are integrated on a PCI-AER board [6] which
plugs into a PCI slot in a desktop computer.

Software agents embedded in this system perform the higher-level functions
as defined in section 1. In this framework, an agent is an independent software
process that implements a particular higher-level algorithm. At present, there
are agents for analysis, on-line display, learning, modulation functions and stim-
ulation. Multiple agents can run concurrently. Each agent communicates with
the hardware neural network by receiving spike trains or activity from the net-
work, and can change the synaptic connectivity and adjust the parameters of
the neurons. Agents can also stimulate the network with artificial spike trains,
providing input from parts of the system which are not implemented in hard-
ware. Event-based agents, i.e. agents that perform computation based on single
events, are implemented in C++, while agents that operate on the statistics of
the activity of the network (as discussed in section 2.1) and do not require a low
latency, can also be implemented in Matlab.



artificial
stimulation

frame­based
learning

sequencer  mapper / monitor

spike­based
learning

monitor
buffering

frame 
conversion

modulation,
gain control

sequencer
buffering

frame 
conversion

on­line
display

PCIAER
BOARD

real­time spiking neural networks (aVLSI / AER)

higher­level functions (software agents)

Fig. 1. Overview of the system architecture. Real-time spiking neural networks are
implemented in VLSI and integrated on a chip (top). As examples, a retina, a feed-
forward network and a recurrent network are shown. The neurons communicate using
the address-event representation (AER) protocol (black arrows). A PCI-AER board
monitors, sequences and remaps the spikes to implement the connectivity. Higher-level
functions such as on-line analysis, learning algorithms, modulatory functions and ar-
tificial stimulation are implemented in C++ software agents (bottom). The agents
transmit and receive spikes to and from the hardware using AER network packets and
can change the connectivity and parameters of the network by modifying the mapping
table and bias voltages (dashed arrows). Analysis agents transform the spike trains
into a frame-based format which represents the activity of a neuron population in the
chosen coding scheme (gray arrows). This allows agents implemented in slow environ-
ments such as Matlab to be integrated into the framework. As an example, a 3D bar
chart displaying the instantaneous firing rate is shown.



2.1 Software AER and Frame-Based Representation

In the software, a spike is represented by a data structure containing an address
and a timestamp recorded when the spike is captured. The timestamp is required
to preserve timing information when the spikes are buffered. The monitor agent
sends blocks of spikes including their timestamps as network packets to receiving
agents. We chose UDP for this software spiking communication because it is fast
and allows several agents to receive the spike trains at the same time using
multicasting.

For many applications, we are not interested in the spike train itself, but
rather in the statistics of the activity of the neurons in the network. Depending on
the chosen coding scheme, this can be an instantaneous spike rate, a spike count,
time-to-first spike, or any other suitable measure. Analysis agents transform the
spike train into one of these activity-based representations.

An agent further along the processing chain can request this activity. To do
so, it first specifies the addresses of the neurons it is interested in. The analysis
agent then transmits the activities of these neurons as a vector. We call this a
frame-based representation. In contrast to conventional frame-based representa-
tions, the timing is asynchronous since the frame can be requested at any time
and the analysis agent will calculate the contents of the frame at that time.
Frames are transmitted between the agents using a TCP network connection.

The frame-based representation makes it possible to include agents in the
framework that have such a long response time that they could not keep up
with the real-time spike train. This allows agents to be implemented in slow
environments such as Matlab. As an example, an on-line display agent can
request frames and display them with a fixed refresh rate independently of the
amount of spikes received.

2.2 Learning Agents

The framework allows a variety of learning and modulation algorithms to be
explored by implementing them as agents. An example of an event-driven agent
is an agent that implements spike-time-dependent plasticity (STDP) [7]. The
agent is configured with the addresses of the post-synaptic neurons and their pre-
synaptic afferents. All incoming spikes are buffered and the agent checks whether
a post-synaptic neuron spiked. If so, the buffer is scanned for spikes from pre-
synaptic neurons that fall within the time window around the post-synaptic spike
and long-term depression or potentiation is calculated. The synaptic efficacy
is then changed on the fly in the mapper’s look-up table using burst length
variation [8]. Exploring STDP with this software-based approach has advantages
over a hardware implementation in that the implementation time is shorter and
testing is easier, since no new hardware has to be added on chip and all of the
algorithm’s variables are accessible.



2.3 Performance

Table 2 shows the performance of the framework in the current state. We show
both maximal values for standalone agents and values for a typical setup using
an agent implementing STDP learning and a display agent. The main limitation
is transferring data (spikes and synaptic weight updates) over the PCI bus.
The driver for the PCI-AER board does not yet support interrupts, and the
current board does not support bus mastering. Even with these limitations,
the measured throughput is sufficient for many experiments because it refers to
the continuous spike rate, whereas biologically plausible networks typically have
short high-frequency bursts of spikes, and the average spike rate remains well
below the maximum throughput.

Maximum values (standalone agent)

rate [s−1] avg.(max.) latency CPU load [%]

AER communication (up to 4 chips) 1.2MSpikes 1.2µs -

Monitoring 310kSpikes 10 (80) ms 97

Synaptic efficacy updates 129kUpdates - 98

Typical setup (multiple agents)

Monitor agent 53kSpikes 15 (90) ms 8

STDP spikes of postsynaptic neurons 24kSpikes 35
synaptic efficacy updates 16kUpdates 44 (220) ms

Spike-rate to frame conversion 53kSpikes 25 (120) ms 3

On-line display (Matlab/X) 2.3 - 24

Fig. 2. Performance measurements. All rates given are maximal rates at which no or
very few spikes are lost (< 1 packet in 1s). ’latency’ denotes the mean (maximum)
latency from a spike being recorded by the PCI-AER board until it is received and
processed by an agent. All measurements were done on a standard PC (2.4GHz Pen-
tium IV, Linux kernel 2.4.26).

3 Conclusion and Outlook

With its modular architecture, our framework supports multiple agents using
event or activity based computation. Software spike trains are broadcast to mul-
tiple receivers and statistics relating to different spike coding schemes can be
requested in a frame-based representation. Thanks to the use of standard net-
work protocols, the system is scalable and can be distributed across several
computers.

New hardware interfaces that implement the individual functionalities of the
PCI-AER board in single hardware modules are being developed as part of a
current project [9]. These hardware modules can be inserted where needed into



the data flow of the system. They will also support much higher spike rates than
the current PCI-AER board, of up to 32MSpikes/s.

The framework can be used to quickly explore higher-level functionality in
a real-time system. Through the use of software agents, it provides a rapid pro-
totyping tool to test learning and modulation algorithms in a real-time system.
With input sensors such as a silicon retina, it can be used to build more com-
plex spike-based neural network systems than presented here that are capable
of reacting to their real-world environment.

Acknowledgments

We would like to acknowledge Vittorio Dante and Paolo Del Giudice (Istituto
Superiore di Sanità, Rome, Italy) for the original design of the PCI-AER board,
and Gerd Dietrich and other members of the Institute of Neuroinformatics in-
volved in the development of the PCI-AER board, of its drivers, and software
library components. We thank Wolfgang Einhäuser for fruitful discussions relat-
ing to the implementation of STDP. This work was supported in part by the
IST grant IST-2001-34124 (CAVIAR).

References

1. Douglas, R., Mahowald, M., Mead, C.: Neuromorphic analog VLSI. Annual Review
of Neuroscience 18 (1995) 255–281

2. Deiss, S.R., Douglas, R.J., Whatley, A.M.: A pulse-coded communications infras-
tructure for neuromorphic systems. In Maass, W., Bishop, C.M., eds.: Pulsed Neural
Networks. MIT Press, Cambridge, Massachusetts (1999) 157–178

3. Vogelstein, R., Mallik, U., Cauwenberghs, G.: Beyond address-event communication:
dynamically-reconfigurable spiking neural systems. In: The Neuromorphic Engineer.
Volume 1. Institute of Neuromorphic Engineering (INE) (2004)

4. Douglas, R., Mahowald, M.: Silicon neurons. In Arbib, M., ed.: The Handbook of
Brain Theory and Neural Networks. MIT Press, Boston (1995) 282–289

5. Lazzaro, J., Wawrzynek, J., Mahowald, M., Sivilotti, M., Gillespie, D.: Silicon
auditory processors as computer peripherals. IEEE Trans. Neural Networks 4 (1993)
523–528

6. Dante, V., Del Giudice, P.: The PCI-AER interface board. In Cohen, A., Douglas,
R., Horiuchi, T., Indiveri, G., Koch, C., Sejnowski, T., Shamma, S., eds.: 2001
Telluride Workshop on Neuromorphic Engineering Report. (2001) 99–103

7. Abbott, L.F., Nelson, S.B.: Synaptic plasticity: taming the beast. Nature Neuro-
science 3 (2000) 1178–1183

8. Oster, M., Liu, S.C.: A winner-take-all spiking network with spiking inputs. In:
11th IEEE International Conference on Electronics, Circuits and Systems (ICECS).
(2004)

9. IST-2001-34124: Caviar - convolution aer vision architecture for real-time.
http://www.imse.cnm.es/˜bernabe/CAVIAR (2002)


