IMSE Publications

Found results matching for:

Author: Pablo Martín Lloret
Year: Since 2002

Journal Papers


Reliability simulation for analog ICs: Goals, solutions, and challenges
A. Toro-Frías, P. Martín-Lloret, J. Martin-Martinez, R. Castro-López, E. Roca, R. Rodriguez, M. Nafria and F.V. Fernández
Journal Paper · Integration, the VLSI Journal, vol. 55, pp 341-348, 2016
abstract      doi      

The need for new tools and simulation methodologies to evaluate the impact of all reliability effects in ICs is a critical challenge for the electronic industry. Issues due to process-related variations (also known as spatial variability) are well-known and off-the-shelf simulation methods are available. On the other hand, models and simulation methods for the aging-related problems, which are becoming more important with each technology node, are far less mature, specially for analog ICs. In this sense, transistor wear-out phenomena such as Bias Temperature Instability (BTI) and Hot Carriers Injection (HCI) cause a time-dependent variability that occurs together with the spatial variability. A fundamental missing piece in the design flow is an efficient and accurate simulation methodology for IC reliability. To this goal, several challenges should be addressed properly: the essential nature of the stochastic behavior of aging (and thus resorting to stochastic models rather than deterministic ones), the correlation between spatial and aging-related variability, and relationship between biasing, stress and aging in analog ICs, among others. This paper discusses some of these challenges in detail.

Conferences


Characterization and analysis of BTI and HCI effects in CMOS current mirrors
A. Santana-Andreo, P. Martin-Lloret, E. Roca, R. Castro-Lopez and F.V. Fernandez
Conference · Int. Conf. on Synthesis, Modeling, Analysis and Simulation Methods and Applications to Circuit Design SMACD 2022
abstract     

This paper presents experimental results on the aging-induced degradation of CMOS current mirrors fabricated in a 65-nm CMOS technology. A dedicated integrated circuit array with custom test structures allowing for accelerated aging tests is used for the characterization, including several geometries of simple current mirrors, in PMOS and NMOS versions. The bi-directional link between device degradation and bias conditions that comes into play during circuit aging, as well as the permanent degradation, are both reported and analysed.

Characterizing Aging Degradation of Integrated Circuits with a Versatile Custom Array of Reliability Test Structures
A. Santana-Andreo, P. Martin-Lloret, E. Roca, R. Castro-Lopez and F.V. Fernandez
Conference · IEEE International Conference on Microelectronic Test Structures ICMTS 2022
abstract     

Abstract not available

Circuit reliability prediction: challenges and solutions for the device time-dependent variability characterization roadblock
M. Nafria, J. Diaz-Fortuny, P. Saraza-Canflanca, J. Martin-Martinez, E. Roca, R. Castro-Lopez, R. Rodriguez, P. Martin-Lloret, A. Toro-Frias, D. Mateo, E. Barajas, X. Aragones and F.V. Fernandez
Conference · IEEE Latin America Electron Devices Conference LAEDC 2021
abstract     

The characterization of the MOSFET Time-Dependent Variability (TDV) can be a showstopper for reliability-aware circuit design in advanced CMOS nodes. In this work, a complete MOSFET characterization flow is presented, in the context of a physics-based TDV compact model, that addresses the main TDV characterization challenges for accurate circuit reliability prediction at design time. The pillars of this approach are described and illustrated through examples.

An IC Array for the Statistical Characterization of Time-Dependent Variability of Basic Circuit Blocks
P. Martin-Lloret, J. Nuñez, E. Roca, R. Castro-Lopez, J. Martin-Martinez, R. Rodriguez, M. Nafria, F.V. Fernandez
Conference · Int. Conf. on Synthesis, Modeling, Analysis and Simulation Methods and Applications to Circuit Design SMACD 2019
abstract     

This paper presents an integrated circuit (IC) array whose purpose is to observe, quantify and characterize the impact of time-dependent variability effects, like aging, in several widely used digital and analog circuit blocks. With the increasing interest that this kind of mechanism has attracted in the last years, for its potential impact in the reliability of ultra-scaled integrated circuits, it is only relevant that appropriate measures are taken to find out how it can be included (and thus mitigated) in the design process of such integrated circuits. And, while substantial literature exists that covers the device level, time-dependent variability at circuit level has not been as equally studied. This work complements our previous efforts in providing a holistic approach to Reliability-Aware Design: from statistical characterization and modeling at device-level, to simulation, and into optimization-based design with reliability considerations, the array presented here provides one more step towards a thorough and accurate understanding of how time-dependent variability works at the circuit level.

Generation of Lifetime-Aware Pareto-Optimal Fronts Using a Stochastic Reliability Simulator
A. Toro-Frias, P. Saraza-Canflanca, F. Passos, P. Martin-Lloret, R. Castro-Lopez, E. Roca, J. Martin-Martinez, R. Rodriguez, M. Nafria and F.V. Fernandez
Conference · Design Automation and Test in Europe DATE 2019
abstract     

Process variability and time-dependent variability have become major concerns in deeply-scaled technologies. Two of the most important time-dependent variability phenomena are Bias Temperature Instability (BTI) and Hot-Carrier Injection (HCI), which can critically shorten the lifetime of circuits. Both BTI and HCI reveal a discrete and stochastic behavior in the nanometer scale, and, while process variability has been extensively treated, there is a lack of design methodologies that address the joint impact of these two phenomena on circuits. In this work, an automated and timeefficient design methodology that takes into account both process and time-dependent variability is presented. This methodology is based on the utilization of lifetime-aware Pareto-Optimal Fronts (POFs). The POFs are generated with a multi-objective optimization algorithm linked to a stochastic simulator. Both the optimization algorithm and the simulator have been specifically tailored to reduce the computational cost of the accurate evaluation of the impact on a circuit of both sources of variability.

Lifetime Calculation Using a Stochastic Reliability Simulator for Analog ICs
A. Toro-Frías, P. Martín-Lloret, J. Martinez, R. Castro-Lopez, E. Roca, R. Rodriguez, M. Nafria and F.V. Fernandez
Conference · Int. Conf. on Synthesis, Modeling, Analysis and Simulation Methods and Applications to Circuit Design SMACD 2018
abstract     

With the downscale of integration well into the nanometer scale, designers have to take into account not only the performance of circuits due to time-zero variability but also the degradation due to time-dependent. To evaluate the impact of variability in the performance of the circuit, a critical metric is the time-dependent yield, the percentage of designs that operate correctly with respect to a set of performance constraints and that, in presence of time-dependent variability, varies over time. With this metric, the lifetime of the circuit, or the time the circuit is working within a pre-defined yield threshold, is another crucial metric, even fundamental in many applications that require a high degree in accuracy for its calculation. This work proposes a new efficient simulation methodology to estimate the lifetime using a stochastic reliability simulator that can provide accurate yield and lifetime metrics for analog circuits while keeping CPU times low.

Reliability in the circuit design flow: from characterization and modelling to design automation
R. Castro-López, J. Díaz, J. Martín-Martínez, R. Rodríguez, M. Nafría, A. Toro, P. Martín, E. Roca, F.V. Fernández, E. Barajas, X. Aragonés and D. Mateo
Conference · How to survive in an unreliable world, IEEE CEDA Spain Chapter / NANOVAR Workshop 2017
abstract     

Designing reliable analog circuits in advanced process technologies requires an accurate understanding of both device performance and variability. The unavoidable and increasingly important process-induced variations is, today, not alone in perturbing the ideal, intended performance of analog circuits: the so-called aging phenomena, like Bias Temperature Instability and Hot Carriers Injection, are altogether making the analog design business a much more tortuous endeavour. The work presented here will paint a complete picture of how to deal with variability in analog circuits for advanced process technologies. This picture starts with the characterisation and modelling of the aging phenomena at the device level. It then will show how these models can be used in the simulation of analog circuits, explaining the issues to overcome and the solutions that can be adopted. With these accurate models and capable circuit simulation techniques, the picture ends with a proposal for an analog design methodology that, using advanced optimization techniques, can successfully take into accounts all sources of variations (process and aging related) so that reliable analog circuits can be attained.

Efficient Computation of Yield and Lifetime for Analog ICs under Process Variabiliy and Aging
A. Toro-Frías, P. Martin-Lloret, R. Castro-López, E. Roca, F.V. Fernández, J. Martin-Martinez, R. Rodriguez and M. Nafria
Conference · Conference on Design of Circuits and Integrated Systems DCIS 2017
abstract     

With the downscale of integration well into the nanometer scale, designers have to take into account not only the performance of circuits due to time-zero variability (i.e., spatial or process variability) but also the degradation due to time-dependent variability (i.e., aging). While process variability has been extensively treated, solutions to cope with aging-related problems are, nowadays, not yet mature enough, especially in the field of analog circuit simulation. Nevertheless, considerable efforts are currently being made to develop new simulation tools and simulation methodologies to evaluate the impact of reliability effects. To evaluate the impact of variability in the performance of the circuit, a critical metric is the time-dependent yield, the percentage of designs that operate correctly with respect to a set of performance constraints and that, in presence of time-dependent variability, varies over time. With this metric, the lifetime of the circuit, or the time the circuit is working within a pre-defined yield threshold, is another crucial metric, even fundamental in many applications that require a high degree in accuracy for its calculation. This work proposes a new efficient simulation methodology to estimate the lifetime using a stochastic reliability simulator that can provide accurate yield and lifetime metrics for analog circuits while keeping CPU times low.

A Size-Adaptive Time-Step Algorithm for Accurate Simulation of Aging in Analog ICs
P. Martín-Lloret, A. Toro-Frías, J. Martin, R. Castro-Lopez, E. Roca, R. Rodriguez, M. Nafria and F.V. Fernandez
Conference · IEEE International Symposium on Circuits and Systems ISCAS 2017
abstract     

Variability is one of the main and critical challenges introduced by the continuous scaling in integrated technologies and the need for reliable ICs. In this regard, it is necessary to take into account time-zero (i.e., spatial or process variability) and time-dependent variability (i.e., aging). While process variability has been extensively treated, considerable efforts are currently being made to develop new simulation tools to evaluate the impact of aging, but very few works have been focused on reliability simulation for analog ICs. Most of the up to day models focused on the aging phenomena make use of the stress conditions of the analog circuit during its normal operation. However, many of the available solutions often miss the bi-directional link between stress and biasing and their changes over time and, therefore, accuracy losses occurs while evaluating the impact of aging in the circuit performance. This paper proposes a new size-adaptive time-step algorithm to efficiently update the stress conditions in the reliability simulation of analog ICs. Compared to similar solutions, the work presented here is able to attain similar accuracy levels with lower computational budgets.

CASE: A reliability simulation tool for analog ICs
P. Martín-Lloret, A. Toro-Frías, R. Castro-López, E. Roca, F.V. Fernández, J. Martin-Martinez, R. Rodriguez and M. Nafria
Conference · Int. Conf. on Synthesis, Modeling, Analysis and Simulation Methods and Applications to Circuit Design SMACD 2017
abstract     

With the evolution in the scale of integration in ICs, aging-related problems are becoming more important and, nowadays, solutions to cope with these issues are not yet mature enough, especially in the field of analog circuit simulation. CASE, the novel simulator presented in this paper, can evaluate the impact of reliability effects in analog circuits through a stochastic physic-based model. The implemented simulation flow is accurate and efficient in terms of CPU. The two main improvements over currently reported and commercial tools, is that the simulator can simultaneously take into account both time-zero and time-dependent variability, and that an adaptive method, to account for the strong link between biasing and stress, can improve the accuracy while keeping acceptable CPU times.

A Size-Adaptive Time-Step Algorithm for Accurate Simulation of Aging in Analog ICs
P. Martín, A. Toro, R. Castro, E. Roca, F.V. Fernández, J. Martín-Martínez and M. Nafría
Conference · Conference on Design of Circuits and Integrated Systems DCIS 2016
abstract     

Variability is one of the main and critical challenges introduced by the continuous scaling in integrated technologies and the need for reliable ICs. In this regard, it is necessary to take into account time-zero (i.e., spatial or process variability) and time-dependent variability (i.e., aging). While process variability has been extensively treated, considerable efforts are currently being made to develop new simulation tools to evaluate the impact of aging, but very few works have been focused on reliability simulation for analog ICs. Most of the up to day models focused on the aging phenomena make use of the stress conditions of the analog circuit during its normal operation. However, many of the available solutions often miss the bi-directional link between stress and biasing and their changes over time and, therefore, accuracy losses occurs while evaluating the impact of aging in the circuit performance. This paper proposes a new size-adaptive time-step algorithm to efficiently update the stress conditions in the reliability simulation of analog ICs. Compared to similar solutions, the work presented here is able to attain similar accuracy levels with lower computational budgets.

Books


No results

Book Chapters


Modeling of variability and reliability in analog circuits
J. Martin-Martinez, J. Diaz-Fortuny, A. Toro-Frias, P. Martin-Lloret, P. Saraza-Canflanca, R. Castro-Lopez, R. Rodriguez, E. Roca, F.V. Fernandez and M. Nafria
Book Chapter · Modelling Methodologies in Analogue Integrated Circuit Design, pp 179-206, 2020
abstract      doi      

This chapter is divided into four sections. In Section 8.1, the probabilistic defect occupancy (PDO) model, a physics-based compact model, is introduced, which can be easily implemented into circuit simulators. Section 8.2 describes a purposely designed IC which contains suitable test structures, together with a full instrumentation system for the massive characterization of TZV and TDV in CMOS transistors, from which aging of the technology under study can be statistically evaluated. Section 8.3 is devoted to a smart methodology, which allows extracting the statistical distributions of the main physical parameters related to TDV from the measurements performed with the instrumentation system. Finally, Section 8.4 describes CASE, a new reliability simulation tool that accounts for TZV and TDV in analog circuits, covering important aspects, such as the device degradation evaluation, by means of stochastic modeling and the link between the device biasing and its degradation. As an example, the shifts of the performance of a Miller operational amplifier related to the device TDV is evaluated using CASE. Finally, in Section 8.5 the main conclusions are summarized.

Other publications


No results

  • Journals585
  • Conferences1171
  • Books30
  • Book chapters81
  • Others9
  • 20245
  • 202335
  • 202281
  • 202183
  • 2020103
  • 201977
  • 2018106
  • 2017111
  • 2016104
  • 2015111
  • 2014104
  • 201380
  • 2012108
  • 2011102
  • 2010120
  • 200977
  • 200867
  • 200770
  • 200665
  • 200578
  • 200468
  • 200362
  • 200259
RESEARCH