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On Algorithmic Rate-Coded AER Generation

Alejandro Linares-Barranco, Gabriel Jimenez-Moreno, Bernabé Linares-Barranco, and Antén Civit-Balcells

Abstract—This paper addresses the problem of converting a
conventional video stream based on sequences of frames into the
spike event-based representation known as the address-event-rep-
resentation (AER). In this paper we concentrate on rate-coded
AER. The problem is addressed as an algorithmic problem,
in which different methods are proposed, implemented and
tested through software algorithms. The proposed algorithms
are comparatively evaluated according to different criteria. Em-
phasis is put on the potential of such algorithms for a) doing the
frame-based to event-based representation in real time, and b) that
the resulting event streams ressemble as much as possible those
generated naturally by rate-coded address-event VLSI chips, such
as silicon AER retinae. It is found that simple and straightforward
algorithms tend to have high potential for real time but produce
event distributions that differ considerably from those obtained
in AER VLSI chips. On the other hand, sophisticated algorithms
that yield better event distributions are not efficient for real time
operations. The methods based on linear-feedback-shift-register
(LFSR) pseudorandom number generation is a good compromise,
which is feasible for real time and yield reasonably well distributed
events in time. Our software experiments, on a 1.6-GHz Pentium
IV, show that at 50% AER bus load the proposed algorithms
require between 0.011 and 1.14 ms per 8 bit-pixel per frame.
One of the proposed LFSR methods is implemented in real time
hardware using a prototyping board that includes a VirtexE 300
FPGA. The demonstration hardware is capable of transforming
frames of 64 x 64 pixels of 8-bit depth at a frame rate of 25 frames
per second, producing spike events at a peak rate of 107 events
per second.

I. INTRODUCTION

RESENT day computer and electronic technology al-

lows for very efficient and powerful intelligent artefacts.
However, there are a number of applications in which engi-
neers would desire a more profound understanding of how
biological living brains perform cognitive human-like tasks.
Biological brains are based on clumsy and slow elements called
neurons, which work during a limited lifetime only. However,
living brains use them with massive parallelism, under clever
hierarchical structures which adapt, self-correct, circumvent
component imperfections, and achieve outstanding computing
performance for what we know as human-like cognitive tasks,
such as driving cars, talking to people, playing football or
tennis, adapting to new environments, and so on. Particularly,
human vision achieves outstanding performance in tasks such
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as scene segmentation and analysis, shape recognition and
reconstruction from occluded and distorted patterns, rapid
identification of unknown shapes, etc. In conclusion, living
brains overwhelmingly outperform their manmade artificial
counterparts. An engineering understanding of the computa-
tional principles of biology would permit the construction of a
new generation of artificial systems for human-like cognitive
tasks with potential in applications such as vehicle navigation,
prosthetics, pattern recognition, robotics, intelligent surveil-
lance, and so on.

Primate brains are structured in layers of neurons, in which
the neurons in a layer connect to a very large number (~ 10%) of
neurons in the following layer [1]. Many times the connectivity
includes paths between nonconsecutive layers, and even feed-
back connections are present. Artificial bioinspired software
models based on such connectivity models have overwhelmed
the specialized literature presenting many ways of performing
bioinspired processing systems that outperform more conven-
tionally engineered machines [2]-[6]. Since these models are
software based, they operate at extremely low speeds, because
of the massive connectivity they emulate. For real-time solu-
tions, direct hardware implementations are required. However,
hardware engineers face a very strong barrier when trying to
mimic the bioinspired hierarchically layered structure: The
massive connectivity. In present day, state-of-the-art very large-
scale integrated (VLSI) circuit technologies it is plausible to
fabricate on a single chip many thousands (even millions) of
artificial neurons or simple processing cells. However, it is
not viable to connect physically each of them to even a few
hundreds of other neurons. The problem is greater for multi-
chip multilayer hierarchically structured bioinspired systems.
address-event-representation (AER) is an incipient bioinspired
spike-based technique capable of providing a hardware solution
to the interchip massive connectivity problem.

AER-based interchip communication was originally pro-
posed by Mahowald and Sivilotti [7]-[9] to reproduce the state
of a two-dimensional (2-D) array of neurons from one emitter
chip onto another receiver chip, continuously and in real time.
A growing community of researchers is using this scheme
for bioinspired vision [10]-[16] and audition [17] systems.
The scheme has been evolving in efficiency and processing
power [18]-[32]. AER technology has been exploited also to
implement real time convolution operations, either of fixed
[12], [31] or programmable kernel shape [15], [16]. In the last
few years AER has been an important mainstream line at the
annual National Science Foundation (NSF) funded Telluride
Neuromorphic Engineering Workshop series [33].

Let us explain briefly why AER seems so promising to this
research community. Biological neurons in a layer communi-
cate with neurons in other layers by sending trains of spikes.

1045-9227/$20.00 © 2006 IEEE



772

Fig. 1. AER interchip point-to-point communication scheme.

The intervals between spikes are in the order of milliseconds, or
more. In artificial VLSI hardware systems it is possible to have
the neurons of one layer on a single chip, but it is completely
impossible to connect physically each neuron in a layer on one
chip to other neurons on another layer at another chip. If each
chip has for example 128 x 128 neurons and we need to con-
nect each neuron to a projective field of 10 x 10 neurons on an-
other chip, we would require more than 1.5 x 10 connections.
At present the most advanced chip packages have a maximum
of around 200-2000 pins. However, current VLSI technologies
can easily handle transition times for interchip communications
in the order of nanoseconds and less [34]. This is more than a
million times faster than biological neurons. AER systems ex-
ploit this feature by: 1) Time-multiplexing the high degree of
connectivity using high speed interchip digital buses with a re-
duced number of pins; and 2) by ensuring that only information
carrying neurons consume communication bandwidth.

AER allows for different signal coding schemes, as will be
explained later. The most direct and original one is called rate-
coding (or frequency-coding). Fig. 1 illustrates the idea behind
the rate-coded AER basics. An emitter chip contains an array
of cells in which each pixel shows a continuously varying time
dependent state which changes with a slow time constant, in
the order of milliseconds. This would be the case, for example,
of a camera or retina chip where each pixel includes a photo-
sensor. The current through the photosensor would change con-
tinuously in time with a time constant in the order of millisec-
onds.! In Fig. 1, each pixel includes a local circuit that generates
spikes, also called events. Each spike is of a very short duration,
in the order of nanoseconds. The intervals between spikes are
much larger, in the order of milliseconds or more. The density of
spikes is proportional to the state or intensity of the pixel. This
can be achieved by using a local oscillator which is a voltage
controlled oscillator (VCO) whose frequency depends on pixel
intensity. Another alternative could be to use integrate-and-fire
neurons [38], [39]. Every time a pixel generates an event, it
tries to communicate with the external interchip high speed bus.
In the receiver chip, every time an event is received, the cor-
responding address is decoded and a spike is sent to the pixel
located at that address. Thus the pixels with the same address in
the receiver and emitter chips “see” the same sequence of spikes.
The receiver pixel includes some type of integration mechanism,

For example, in commercial video cameras each pixel is sampled between
25-30 times per second, which is a sampling period between 33—40 ms (this
rate is called frame rate). According to the sampling theorem, the pixel signal
bandwidth should be less than half the sampling rate. Therefore, less than 12.5—
15 Hz.
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so that the original continuous time-varying state or intensity is
recovered. This is rate- or frequency-coded AER, because pixel
activity is transformed into pixel event frequency. Note that this
coding scheme may be highly inefficient for convential image
transmission: Monochrome VGA resolution? yields a peak rate
of (480640 pixels/frame) * (256 spikes/pixel) * (25 frames/s) *
(19bit/spike) = 37 Gbit/s. However, most of the AER hardware
systems reported so far in literature use this rate-coded AER
(71, (81, [101-[12], [14]-[19], [23], [27], [29], [48], [50], [51].
This is because AER systems do not usually transmit raw im-
ages, but already preprocessed images, such as edges or contrast
[51] (in which 20 gray levels are satisfactory, and only a small
percentage of all pixels—between 1-10%—will present appre-
ciable contrast). This will reduce the previous full VGA peak
rate by two—three orders of magnitude. Also, present day AER
hardware uses image resolutions between 64 x 64 and 128 * 128
pixels at the most, thus adding another one—two order reduction
in the peak rate. Thus, present day rate-coded AER hardware
requires around 200 Kevents/s (2.9 Mbit/s). In general, AER is
useful for multistage processing systems, in which as events are
generated at the front end they travel and are processed down the
whole chain (without waiting to finish processing each frame).
Also, in multistage systems, information is reduced after each
stage, thus reducing the event traffic. AER is definitely not ad-
vantageous for simple image transmission and restoration sys-
tems.

New findings in neuroscience have revealed that besides
the historically postulated frequency coding scheme of spikes,
brains exhibit other coding schemes which do not require the
integration of spike trains, a relatively slow and inefficient
process. Researchers have discovered that brains use space
coded spike patterns to transmit information [35]-[38]. Con-
sequently, AER can be used to generate almost simultaneous
trains of space-time correlated events that code information.
This is, for example, the case of motion retinae, in which a
moving profile elicits a train of simultaneous events at the
coordinates of the profile. Other recent findings reveal that
brains use intensity to spike-time coding, in which spike-time
is the delay between a global reset time and spike appearance
[38]-[40]. Pixels of high intensity would appear almost in-
stantaneously, while low intensity pixels would appear later.
The global reset time could be established by the appearance
of a new image, for example. This coding scheme would also
produce almost instantaneous and highly space-time correlated

2480 x 640 pixel frames, at 25 frames per second, with 8 bits per pixel.
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spike events corresponding to profiles of the most intense image
pixels.

In this paper, we will concentrate on rate-coded AER, which
is still the most widely reported for AER hardware systems
(71, (8], [101-[12], [14]1-[19], [23], [27], [29], [48], [50],
[51]. Research for nonrate-coded AER algorithmic generation
is presently under development [40]-[43]. Nonetheless, the
rate-coded-based algorithms analyzed in this paper do not lose
the space-time correlation property of events belonging to the
same simultaneous profile, as will be illustrated at the end of
the paper.

A very interesting and powerful feature of AER communi-
cation is its potential for adding computations on the fly. Since
pixel addresses are physically present on the interchip bus, extra
digital address processing is possible. Simple combinational cir-
cuits can be inserted in the data path to perform shifting of the
address space. Inserting (EE) PROMs with appropriate lookup
tables would allow rotation operations or generic remappings.
More complicated circuits can also be used such as microcon-
trollers, which, from a single address, can generate sequentially
a “bubble” of addresses around it, also called a “projection field”
[29]. This freezes the interchip communications while the pro-
jection field is being generated. Consequently, this approach in-
troduces a significant delay which grows quadratically with the
projection field radius. Interesting and powerful approaches for
performing AER-based convolution operations have also been
proposed [12], [15], [16] by developing special receiver chips
which would not freeze the interchip high-speed bus.

AER not only offers the possibility of great and powerful
computations while events travel between chips but also an easy
way of expanding system size by assembling multichip hierar-
chical structures. If a neural layer is required with more neurons
than those on a single chip, it is possible to arrange chips in a
matrix fashion in order to assemble a layer of the required size.
Also, multiple layers are directly assembled by connecting chips
through the AER high speed interchip buses. Fig. 1 shows a
typical AER point-to-point communication [23]. However, this
scheme could be easily expanded to multireceiver [26] and mul-
tisender situations [24]. Consequently, AER can easily evolve
into a technology that offers the possibility of assembling ar-
bitrarily complex hierarchically structured multilayered neural
systems. Researchers and system developers would be able to
assemble systems by using simple building blocks such as AER
retina chips, convolution transceivers, competition transceivers,
... and interchip AER buses. When scaling up AER-based sys-
tems, care should be taken to guarantee that each AER bus does
not require an event traffic sustain rate greater than the physical
limit it allows. In practice, this is achieved by scaling down the
maximum event frequency of the pixels.

However, for proper development, usage and exploitation of
this AER technology a key element is still missing. This key
element is a proper computer interface that would allow us to
“probe” the interchip AER buses. By “probing” we mean ei-
ther: 1) To visualize the 2-D images that travel from chip to chip
coded as address events; or 2) to inject artificial images stored
or generated by the computer into an AER interchip bus. This
way, developers would be able to work on later stages of a com-
plicated structure without having all the preceding layers ready.
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For example, when developing our AER convolution chips [16],
the FBR-AER computer interface proved to be a crucial piece
for proper testing, characterization, tuning and debugging. Such
interfaces require transformations in real time between the asyn-
chronous AER spikes and the conventional FBR (frame-based
representation) video sequences of conventional video systems.

However, transforming the video stream of a conventional
frame-based representation (FBR) sequence to an asynchronous
event-based representation in real time is not trivial at all. On
the other hand, going from asynchronous AER to synchronous
FBR video is more or less straightforward: If Tt,,me is the du-
ration of a single frame, a 2-D video frame memory is reset at
every time ¢ = nTfame(n € [0, 00[), then for each event ad-
dress (z, y) the memory position for this address is incremented
by I;att = (n + 1)Thame the content of the 2-D memory is
transferred to the computer screen and reset again. This is more
or less how state-of-the-art AER hardware engineers visualize
their AER systems outputs on computers [14]. On some occa-
sions integrating AER receivers are built which are read out pe-
riodically as frames (FBR) [19]. On the other hand, the trans-
formation from a conventional FBR video sequence coming
from a computer (or any other conventional video device) to
an asynchronous AER is much more sophisticated, especially if
done in real time. Such a transformation is the purpose of the
present paper. We have studied several algorithms able to per-
form such a task and have compared them according to different
criteria. At some point the computer will interface to the phys-
ical AER bus. Consequently, if the algorithm is fast enough, the
transformation from FBR to AER can be performed in software
and the interfacing hardware would simply transmit the address
events from inside the computer to the AER chips buses. How-
ever, as image size and event activity increases, the computa-
tional load increases quadratically, and the software transforma-
tion is impractical at some point. Under this situation, it would
be desirable to implement the algorithms directly in hardware
in order to speed up the transformations. Our objective in this
paper is to show algorithms and techniques which can generate
rate-coded AER activity in real-time using the standard PCI bus
of a conventional computer. Then we will show how we have
implemented one of these algorithms in real time FPGA-based
hardware.

The paper is structured as follows. Section II describes sev-
eral algorithms for FBR-to-AER transformations. In Section III
these algorithms are evaluated comparatively according to dif-
ferent criteria. Finally, Section IV describes a hardware FPGA-
based implementation of one of the proposed algorithms.

II. ALGORITHMS FOR RATE-CODED AER GENERATION

One can think of many software algorithms to transform a
2-D bitmap image (stored in a computer’s memory) into an AER
stream of pixel addresses. Generally, the frequency of appear-
ance of the address of a pixel should depend on the intensity
of the pixel. If event frequency is much higher than the pixel
signal bandwidth, then precise positioning of the events in time
is not critical. Events can be time shifted up to a certain degree
because AER receivers reconstruct signals by integrating (aver-
aging) over time. If, for example, events are randomly shifted in
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Tlustration of reconstructed AER images. On the left, an original 128 x 128 image with 256 gray levels, which has been transformed (by software) into

AER streams using different algorithms. The other eight figures correspond to reconstructing the images by averaging (for each pixel) the interevent times over a
complete frame period, and modulating the resulting value by an event distribution error term, as explained in the text. (a) Original image. (b) Scan. (c) Uniform-BF.
(d) Uniform-F. (e) Uniform-WTA. (f) Random. (g) Random-SQ. (h) Random-HW. (j) Exhaustive.

time with respect to their ideal exact position, then after image
reconstruction (integration) the image would appear with some
added noise.

The algorithms should perform a transformation from pixel
activity p to pixel event frequency f,,. Let us assume pixel ac-
tivity is constrained to a normalized unity interval p € [0, 1].
As explained in the Appendix, we will assume some (optional)
constraints throughout the paper, yields

K

=p— 1
prrame ( )

fp
where K = n,.s is linear pixel resolution.> Whatever algorithm
is used, the idea is to generate for each video frame a vector
of addresses that will be sent to an AER bus. Let us call this
vector the “frame vector.” The frame vector has a fixed number
of time slots to be filled with event addresses. The number of
time slots depends on the time assigned to a frame (for example
Ttrame = 40 ms) and the time required to transmit a single event
(for example Tevent = 10 ns). The total number of time slots in
the frame vector is then ngots = Tirame/Tevent- If we have an
image of N x M pixels and each pixel has a gray-scale resolu-
tion of n,.s, then the maximum possible number of events one
pixel can put on the “frame vector” is K = n,es (for p = 1). In
the worst case, the frame vector would be filled with N x M x K
addresses. Note that, in principle, one would like this number
to be less than or equal to ngpts, although this restriction is
not critical since the situation of having all pixels at the max-
imum rate is not realistic. Depending on the total intensity of
the image there will be more or less empty slots in the frame
vector. Each algorithm would implement a particular way of
distributing these address events, and would require a certain
computation time. Note that this frame vector is a very memory
hungry buffer (for 256 x 256 pixel images, with Toyent = 10 ns
and Tt ame = 40 ms, it requires 8 MBytes). For real-time hard-
ware, the most attractive algorithms are those that sweep the
frame vector once, slot after slot. This way it is not necessary to
build this large memory frame vector buffer physically.
Next, we propose some algorithms capable of performing the
transformation FBR-to-AER [44], [45]. Then, in the following

3For example, for 8-bit pixel resolution 7. = 2% = 256.

section we will explain criteria to evaluate and compare the dif-
ferent algorithms.

A. Scan Algorithm

Assume an image (or frame) of an FBR system is stored
during a time Tfame in a temporary (RAM) memory. Each
memory position contains an integer with values between 0
and K — 1. This algorithm scans the memory pixel by pixel
many times, while a pointer sweeps the frame vector slot by
slot. If the pixel value is nonzero, its address is put on the frame
vector at the current frame vector pointer position. The pixel
value is decremented by one, and the frame vector pointer is
incremented by one. If the pixel value is zero, a blank slot is
left in the frame vector. This method is computationally simple
and consequently relatively fast. However, the resulting event
distribution is very different from the one an AER emitter
chip would produce. Particularly, events would be much more
concentrated at the beginning of the frame vector, getting more
and more sparse along it, and eventually the frame vector could
be completely empty in the last positions.

As an illustration, Fig. 2 shows reconstructions of an image
that has been transformed into different AER streams for
different AER generation algorithms. The original image in
Fig. 2(a) was used to generate an AER stream for the time of
one frame (40 ms). Then, for each pixel (i.e., for events of equal
address in the AER stream), the interevent times were averaged
over the whole frame vector, and the resulting value was taken
as the reconstructed value for that pixel. This value is exactly
neyt for that pixel,* as in the ideal AER distribution. In order
to illustrate the difference between an ideal AER distribution
and the one generated by the algorithm, we multiply the recon-
structed value by an error termS that indicates how much the
interevent intervals differ between the ideal and reconstructed
distributions for a frame. In Section III we will return to these
issues with precise mathematical considerations. Fig. 2(b)
shows the resulting values of the pixels for the AER stream
generated by the Scan Algorithm.

4Except for algorithms where events are deleted after a collision.

SThe error term is 1+error, where error is the average (over a frame) relative
norm-1 distance between ideal and real interevent times.



LINARES-BARRANCO et al.: ON ALGORITHMIC RATE-CODED AER GENERATION

MSB

LFSR

775

LSB

Fig. 3. Random-Hardware LFSR uses a full 22-bit register.

B. Uniform Algorithm

The objective of this algorithm, as opposed to the previous
one, is to distribute equidistantly the events of each pixel along
the frame vector. A frame is scanned pixel by pixel only once.
The intention is now for each pixel to distribute its events at
equal distances along the frame vector. As the frame vector is
being filled, the algorithm may want to place addresses in slots
that are already occupied. This situation is called a collision, and
one of the two events needs to be reallocated. In this case, we
propose three solutions.

The Back-Forward (Uniform-BF algorithm) solution will put
the event in the nearest empty slot of the frame vector. Fig. 2(c)
shows the reconstructed error-modulated AER stream generated
from the image in Fig. 2(a) using this algorithm.

The Forward (Uniform-F algorithm) solution will put the
event in the following empty slot of the frame vector. Fig. 2(d)
shows the reconstructed error-modulated AER stream gener-
ated from the image in Fig. 2(a) using this algorithm.

And the Winner-Take-All (Uniform-WTA algorithm) solution
will put the event of lowest intensity in the collision position of
the frame vector. The event of the other pixel of higher inten-
sity will be ignored. Theoretically, pixels with higher intensity
appear more frequently on the bus. Therefore, ignoring one of
their events will produce a smaller event distribution error along
the frame vector than for less active pixels. Fig. 2(e) shows the
reconstructed error-modulated AER stream generated from the
image in Fig. 2(a) using this algorithm.

Uniform-BF, Uniform-F and Uniform-WTA algorithms will
introduce more distribution errors (reallocation of events) at the
end of the process than at the beginning. The execution time
grows considerably because the collisions consume an impor-
tant amount of time to be resolved.

C. Random Algorithm

This algorithm exploits the traditional method of random
number generation based on linear feedback shift registers
(LFSR) [46]. LFSR-based random number generation provides
a very long sequence of random numbers repeated periodically.
If the shift register is of n-bit size, then the period will be
2" — 1 (number zero is excluded). All possible numbers of
n-bit size will be generated (except zero) but none of them will
be repeated during the same period. Consequently, if we make
the frame vector of size ngots = 2", we can use an LFSR of
n-bit size and generate a random sequence for the frame vector
positions into which events may be allocated. For example, if
each frame is of size N x M = 128 x 128 and each pixel
generates between 0 and K — 1 = 255 events per frame 7eyf,

| 21] 20[ 19| 18] 17 16] 15| 14| 13[ 2] 23] 10| o 8] 7] 6] 5] 4] 3] 2] 1] o]
A

{

then the maximum number of slots required for the frame
vector would be

Nglots = K X N x M = 256 x 128 x 128 = 28 x 27 x 27 = 2%?

2
and an LFSR of 22-bit size could be used. For example, Fig. 3
shows a 22-bit LFSR that would generate all 22? numbers (ex-
cept ‘0’) in a “random” order. The theory of LFSR explains
how to implement the feedback logic for pseudorandomness to
occur, and what is the minimum bits that need to be fed back,
depending on register size [46].

An LFSR random algorithm for FBR-AER transformation
would operate as follows. A frame is stored into the temporary
memory. The frame is scanned pixel by pixel only once. For
each pixel, the LFSR is called as many times as the value of
Nevt, and the pixel address is placed on the frame vector at the
positions provided by the LFSR.¢ The events of the same pixel
will not be equidistant along the frame vector, but will be dis-
tributed randomly over its complete range. Unfortunately, it is
possible to allocate for the same pixel two events very close in
the frame vector. This is not desirable and can be avoided in sev-
eral ways. For example, instead of using an LFSR of size n for
the frame vector pointer, one can use one of size n — b for the
lower bits of the frame vector pointer and a b-bit counter for the
most significant bits. The algorithm would operate as follows.
The frame memory is scanned once. Then, for every 2° pointer
values, the n—b bit LFSR is called once and the counter is called
2% times. This will produce 2° equally spaced pointers along the
[frame vector whose initial pointer is randomly placed along the
first 2° positions.

Fig. 4 shows, for example, an LFSR structure with a 2-bit
counter for a 128 x 128 frame with 256 gray levels (n—22 bits).
This would divide the frame vector into four sections. A random
pointer would be generated for the first section and three more
equally distant pointers along the whole frame vector would
follow. If the number of sections is selected to be equal to the
maximum possible value of nevf|max = K, then events of the
same pixel address would never fall within the same section for
the same frame.

Fig. 2(f) shows the reconstructed error-modulated AER
stream generated from the image in Fig. 2(a) using this algo-
rithm with a 2-bit counter.

D. Random-Square Algorithm

For the Random algorithm with a fixed size counter from 1
to the maximum 7.¢ (or maximum pixel gray level K — 1),
the event distribution for high activity pixels is acceptable, but

6Since number zero cannot be generated, the algorithm can use this position
for the first event and afterwards call the LFSR for the rest of events.
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Fig. 4. Random method structure: LESR with a 2-bit counter.
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Fig. 5. Random-Square structure: LFSR-8 and LFSR-14.

poor for low level values (they will be always concentrated at
2% distances in the frame vector). Substituting the counter by
another LFSR, the distribution could be improved.

Foran N x M = 128 x 128 = 27 x 27 frame with max-
imum neys of K —1 = 255 = 28 — 1, an 8-bit (log, (K )) LFSR
(LFSR-8) is used for selecting 255 slices of 128 x 128 posi-
tions, and another 14-bit (log,(N) + log,(M)) LFSR selects
the position inside the slice. The image is scanned only once.
For each pixel a 14-bit number is generated by the LFSR-14,
and the LFSR-8 is called as many times as ny¢. Fig. 5 shows
the LFSRs used by this random-square method. Fig. 2(g) shows
the reconstructed error-modulated AER stream generated from
the image in Fig. 2(a) using this algorithm.

E. Random-Hardware Algorithm

The two previous LFSR-based methods are very attractive for
a hardware implementation because of the simplicity and effi-
ciency of the LFSR methods. However, in both cases the com-
plete frame vector has to be generated and stored before starting
the transmission. This frame vector could be extremely large for
medium-to-large frame sizes and medium-to-high pixel resolu-
tions. For example, for N = M = 128 and K = 256, the
maximum number of events in the frame vector can be as large
as Nelots = N X M x K = 222 = 4.19 x 109, while each
slot needs to store 7 + 7 = 14 bits. Therefore, these solutions
are only useful for hardware implementations that require rea-
sonably small frame vectors. So far, the only method that does
not require the physical presence of a frame vector if imple-
mented in hardware, is the Scan Algorithm. This is because the
frame vector pointer advances uniformly from start to end. For
all other methods, the pointer goes back and forth. The algo-
rithm described in what follows sweeps the frame vector pointer
uniformly, but is of random nature.

This algorithm only requires memory to store the frame
image to be transformed. It uses an LFSR of as many bits as
necessary to generate N x M Xx K numbers, as before. For
example, if N = M = 27 = 128 and K = 2% = 256, then
7+ 7+ 8 = 22 bits are needed. The 22-bit LFSR is called
222 times, providing random numbers. For each number, a
pixel is selected in the image using the log,(N) + logy (M)

(] l‘
(|
A\

less significant bits of the pseudorandom number. With the
other log,(K) bits, the algorithm decides if the event has to
be sent or not. If the log,(K) more significant bits represent a
number larger than the value of the pixel (nqyvf), then an event
is sent with the logy (V) + log, (M) less significant bits of the
pseudorandom number as the address. In the other case, the
pseudorandom number is ignored and a pause equivalent to
one event is generated. Consequently, the algorithm generates
the pseudorandom numbers, and decides whether or not the
resulting event is sent in real time. Therefore, no frame vector
is needed. Fig. 3 shows the LFSR used for this method in
the case N = M = 128 and K = 256. Fig. 2(h) shows the
reconstructed error-modulated AER stream generated from the
image in Fig. 2(a) using this algorithm.

F. Exhaustive Algorithm

This algorithm [44], [45] divides the frame vector into K
equal slices. Each slice is of size N x M, so that it assigns the
same position for each pixel within all slices (so far, this is like
in the Random Square Algorithm, or the Random Algorithm for
2" = K). This algorithm assigns for the first pixel the first po-
sition in the slice, for the second pixel the second position in
the slice, and so on. Consequently, it uses the same counter to
sweep pixels in the frame as well as to generate the positions
within the slice. The peculiar thing about this algorithm is the
way it selects the slices into which the n..+ events are put for
each particular pixel. Each selected slice will have one event for
the active pixel, and the selected slices will be such that they are
as far apart as possible. For example, if K = 8 and neyr = 2,
then the maximum spacing is 4. The algorithm will put one event
always in the last slice (k = 7) and in slice K = 3 (k € [0, 7]).
Thus, if neys is constant from frame to frame, the distance will
always be four slices. If K = 8 but ne,+ = 3, the algorithm will
select slices k = 2, 5, 7 which will give distances of 2, 2, and
1 slices. Mathematically, one needs to find out if (K /neve)n;
(with n; = 1, ... nent) falls within the kth slot. More precisely,
if

K
ni <k+1. 3)
Tevf

k<
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This same condition can be expressed more elegantly as

(k X Neye)modK + neyve > K. (4)

The algorithm operates as follows. The frame is stored in
local RAM memory, and is swept pixel by pixel K times. At
the same time the frame vector pointer advances by one for each
pixel, using a counter that counts up to N x M x K. The lower
logy(N) + log, (M) bits of the counter determine the position
that corresponds to each pixel within the slices. This slice po-
sition is thus unique for each pixel. The higher log, (K) bits of
the counter tell us in which frame vector slice we are. For each
slice k € [0, K — 1] and the algorithm evaluates whether or not
(4) is satisfied. If it is true, an event for this pixel is put on this
slice. Otherwise, the slice is skipped for this pixel [44], [45].
Fig. 2(j) shows the reconstructed error-modulated AER stream
generated from the image in Fig. 2(a) using this algorithm.

Note that this method does not require a physical implemen-
tation of the frame vector, because frame vector positions are
swept one by one, as was done by the Scan and Random-Hard-
ware algorithms.

III. ALGORITHM EVALUATION AND COMPARISON RESULTS

In this section we compare the methods proposed above and
estimate how the performance of the methods is affected by the
traffic or load of events in the AER bus. To carry out this analysis
we generated a set of images with random pixel values. With the
assumptions and constraints that we have used in the previous
section (a = 1, Aneys = 1), an N X M frame with all pixels
at maximum value K — 1 = n.s — 1 would completely fill a
“frame vector” of size ngjots = N X M x K. In this case we say
the frame has a 100% load on the AER bus. If a frame has an
average pixel value of 50% then the frame vector is filled only
up to 50%. The more load in the frame, the more difficult it will
be for the FBR-AER algorithm to perform the transformation,
yielding worse results. In order to test the previously outlined
FBR-AER algorithms we generated nine different test images
of different loads (10%, 20%, 30%, ... 80%, 90%). Let us call
q € [0, 1] the load (normalized to unity) on the AER bus, and
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(b)

Fig. 6. TIS. (a) Histogram for random image generation. (b) Resulting images (10% load upper left, 90% load lower right.

Ny (neye) the number of pixels in a frame with value ny¢. This
function [see Fig. 6(a)] is precisely the histogram for the events
of one frame. The area of the histogram > Ny (nevt) is equal
to the total number of events n.,7 and satisfies

K-1
NeyT = Z Ny (neyt) = N x M x K x q.

Neyr=1

&)

Using a Gaussian function with the constraint of (5) and im-
posing that either Ny (1) = 1 or Ng(K — 1) = 1, a unique
Gaussian function for Ng(ney¢) is obtained. Then, for each
Nevt € [1, K — 1], Ng(neve), random addresses (z,y) of the
frame image are generated into which pixel value nq¢ is written.
Thus, a random image of load ¢ and a Gaussian histogram are
generated. Fig. 6(b) shows the nine generated images (N =
M =128, K = 256). Let us call this set of nine images our Test
Image Set (TIS). We will compare the FBR-to-AER algorithms
according to five different criteria: Computational complexity,
distribution error, distribution histogram, event clustering, and
reconstruction error.

A. Computational Complexity

Let us compare the algorithms according to the time needed
by the same computer to run them as software programs. This
will compare the computational complexity of the algorithms.
The algorithms were written in C. We are not interested in the
absolute speed of the software, but rather in the relative differ-
ence between the execution times of the different algorithms.
In order to do this, all algorithms were written in C doing the
exact operations described above, without calling library rou-
tines. Each algorithm was executed for the nine images of our
TIS, and execution times were normalized with respect to the
maximum. The results are shown in Fig. 7(a). As may be seen,
all uniform algorithms grow in computation time very quickly
as the event load of the images increases. The Scan Algorithm
is the fastest one since it hardly needs to execute any mathemat-
ical operations. Also, its execution time increases very slowly
with the event load. The exhaustive algorithm is the next fastest
one, since it requires some more computations, and its execution
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Fig. 7. Comparisons of the different algorithms. (a) Execution time comparison of software implementation for the different Synthetic AER generation
Algorithms. (b) Distribution Error ¢, (in %) as defined in (7), as function of AER Traffic Load, for all synthetic AER generation methods. (c) Entropy of S set for
the AER bus. (d) Variance of D for the AER bus. (¢) Maximum of D for the AER frame vectors. (f) Overall clustering behavior.

speed is almost independent of event load. Algorithms Random
and Random-SQ are the next fastest ones, and their speed in-
creases between a factor of two to three, from 10% to 90% of the
event load. The three Uniform algorithms are the ones that most
depend on image load, yielding almost a factor 100 of speed dif-
ference between the cases of 10% and 90% of the event load. Al-

gorithm Random Hardware has computation times completely
independent of image event load, therefore showing a straight
horizontal line in Fig. 7(a).

The vertical axis in Fig. 7(a) is normalized with respect to the
slowest situation: 90% bus load for the Uniform-WTA method.
This corresponds to 62.62 s of CPU time on a 1.6-GHz Pentium
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Logarithmic Poisson Distribution of Synthetic methods.
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Histograms of interspike times for the nine images of our TIS, using the eight synthetic AER generation algorithms. X axes show interspike times, and Y

axes the number of interspike intervals within a given interspike time window. Each row of histograms corresponds to one algorithm, while each column corresponds

to a TIS image.

IV computer. Consequently, since TIS images are 128 x 128
pixels, this corresponds to 3.8 ms/pixel. For a 50% bus load,
the spread in computation time is from 0.011 ms/pixel to 1.14
ms/pixel, depending on the algorithm.

B. Distribution Error

In an ideal AER distribution all events for one pixel (of con-
stant value during T.ame) are equidistant in time. However, the
algorithms outlined earlier will not implement exact time spac-
ings for the events of the same pixel, because either the nature of
the algorithm does not guarantee it, or because different pixels
collide on the same frame vector slot and the algorithm looks
for displaced slots or erases events. In this section the distribu-
tion of events obtained with each algorithm is evaluated. Let us
call Distribution Error how much the event distribution gener-
ated by an algorithm deviates from the ideal distribution. First
we need to provide a mathematical definition for this Distribu-
tion Error.

Let us call D the ideal distance between events of the same
pixel of an NV x M image with K — n,.s gray level values. Then

NxMxK

Tevf

Nslots _

D=

(6)

Nevf
For events generated by algorithms the distance between events
will change, in principle, from event to event for the same pixel.
Let us call dj, the distance between the kth event and the (k +
1)th one for a given pixel. For each interevent interval the error
is ey = |D — dg|. Let us call Distribution Error the relative
standard deviation of all {ey } for this pixel

)

Fig. 7(b) shows this distribution error standard deviation (in
percent) for the different methods and for the nine images of
our TIS. The x axis represents the image event load and the
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(a)
Fig. 9.

y axis is the distribution error o, as defined in (7). As can be
seen, the Uniform-B and Uniform-BF algorithms yield a prac-
tically negligible distribution error. For a 90% event load, the
error is as low as 0.1%. The worst results, as expected, are ob-
tained with the Scan algorithm, in which the distribution error
standard deviation changes between 90% and 400% for our TIS.
The Uniform-WTA algorithm behaves also much worse than the
other two uniform algorithms, yielding an error standard devi-
ation starting at 3% and increasing until 100%. The Exhaustive
algorithm behaves relatively well, with an error that starts at 4%
and has a maximum of 30%. The Random-Square algorithm
yields a minimum error of 15% at minimum load and a max-
imum of 50% at a load of about 50%. Algorithms Random (with
a 2-bit counter) and Random-Hardware behave almost identi-
cally. They yield a minimum of about 20% at minimum load
and a maximum of about 100% at maximum load.

C. Histograms of Distributions

An interesting measure is the histogram of interspike in-
tervals in the frame vector. In this case we are looking at the
times between events without looking at the event addresses.
That is, all addresses are considered. Such histograms have
been studied before [14], [23] and Poisson-type distributions
are expected for biological as well VLSI AER systems. Con-
sequently, histograms representing in the x axis the interspike
times and using a logarithmic scale for the y axis should ideally
show a straight line of negative slope. We have computed the
histograms for frame vectors generated using the different
methods for the images of our TIS. Fig. 8 shows the resulting
histograms. As may be seen, the Scan Algorithm does not
provide a Poisson-like distribution. However, for the rest of
the algorithms the histograms show the Poisson exponential
behavior. For the Exhaustive Algorithm such exponential be-
havior is however degraded for longer interevent intervals.
The Uniform Algorithms also show a slight degradation for
longer intervals. The Random Algorithms do not show this
degradation, although the Random-SQ Algorithm tends to show
a truncation after a certain interevent time. In general, we may
conclude that, except for the Scan Algorithms, all seem quite
Poisson-like, especially the Random and the Random-HW
algorithms.

D. Event Clustering

Here, we would like to evaluate the ability of an algorithm
to avoid the formation of large clusters of events in the frame
vector. An algorithm with this property would be more useful,

IEEE TRANSACTIONS ON NEURAL NETWORKS, VOL. 17, NO. 3, MAY 2006

Integrator circuits for AER reconstruction. (a) RC lowpass filter. (b) Boahen’s diode-capacitor integrator. (c) Mortara’s PFM demodulator.

for example, if we need to interface our synthetic AER generator
to an AER chip (or system) of lower AER bandwidth (larger
Tevent)- If our algorithm tends to cluster events (fill large number
of consecutive slots), our AER sender will be forced to wait for
long periods of time due to the slower AER receiver. This will
distort the original distribution generated by the algorithm. On
the other hand, if the algorithm has the tendency of inserting
empty slots in event-dense regions, then it helps slower AER
receivers by giving them extra time to catch up, and the original
event distribution will be less distorted.

A useful concept that comes in handy for this purpose could
be that of Entropy. The entropy H of a set S is defined as [47]

H(S)==> pilog(pi) with > pi=1 (8

where p; is the probability of the elements of S. Let us generate,
for our purpose, the following set S = {a1, ao, . . . a, }. Eachel-
ement a; is equal to the number of clusters of size ¢. Thus, if a
frame vector has 300 groupings of 5 consecutive events (with
empty slots before and after each event), then a5 = 300. Note
that the total number of events in the frame vector can be ex-
pressed as

n
NevT = E ,La’l =
i=1

Given a frame vector already generated by a given algorithm, if
we pick randomly one of the n.,r events, the probability of it
being in a cluster of size ¢ (element a; of S) is

n

>

i=1

iai -1

©))

NevT

iai
pi = — (10)

NevT ’
Consequently, using this p; we can use (8) to obtain an estimate
of the entropy H of set S. Low entropy values will tell us the al-
gorithms have a tendency to form a low variety of clusters, while
large entropy values reflect the fact that the algorithms tend to
produce a large variety of clusters. For our purposes, we would
like the algorithms to have a tendency of not forming clusters (a;
very large) or forming clusters of small size (a; tends to zero as
1 increases). This implies that we want a small variety of clus-
ters and of small size. Consequently, we are looking for algo-
rithms that provide low values of the previously defined entropy.
However, low entropy values are also produced when only large
clusters are produced. In this case, we need to penalize such sit-
uations.

Let us use the following method to quantify the statistics of
forming large size clusters. First a vector D, is generated by
scanning the frame vector once, slot by slot. Every time there
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Fig. 10. Algorithm comparisons based on integrator reconstructions. (a) Reconstruction errors for the TIS images using ideal AER distribution frame vectors and
the three reconstruction integrators: Mortara, Boahen, and RC. (b) Reconstruction errors for the TIS images using algorithmically generated AER distributions
frame vectors and the RC reconstruction integrator. (c) Reconstruction errors for the TIS images using synthetically generated AER distributions frame vectors and
the Boahen reconstruction integrator. (d) Reconstruction errors for the TIS images using synthetically generated AER distributions frame vectors and the Mortara

reconstruction integrator.

is an empty slot we set D.(j) = 0 and increment j by one.
Every time there is a cluster a; of size i, we set D.(j) = i and
increment j by one. Obviously, Y D.(j) = ne,7. For vector
D, let us now compute its maximum

Mp, = max; {D.(j)} (11)
and standard deviation
)
S (D.(j) - D2)
_ J
oD: = max(j) — 1 (12)

Our synthetic AER generation algorithms have a tendency to
form clusters of small size if our previously defined entropy
H yields small values and at the same time Mp_ and op, are
of low values as well. Consequently, a relevant figure of merit
would be the product of the three. Fig. 7(c) shows the entropy
obtained for the proposed algorithms using our TIS. Fig. 7(d)
shows the resulting values of o p_, Fig. 7(e) those for Mp_, and

Fig. 7(f) shows the product H(S) X op, X Mp_ normalized to
the maximum.

As may be seen, the three random-based methods tend to
avoid clustering, while the Uniform-BF and Uniform-F have
a significantly stronger tendency to form event clusters. Algo-
rithms Scan, Exhaustive, and Uniform-WTA have an interme-
diate event-clustering behavior, surprisingly similar.

E. Reconstruction Error

In this subsection we will compare the performance of the
algorithms by evaluating the images that result from recon-
structing the AER stream in the frame vectors. To do so we
need to use some kind of event integration mechanism. We will
use the following three methods, reported and used previously
in AER literature:

1) Linear Low-Pass Filter: This corresponds to the case in
which an event in a receiver pixel generates a fixed charge packet
AQ which is integrated on a capacitor C with a resistor R in par-
allel [48] [see Fig. 9(a)]. The current established in the resistor
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TABLE 1
Requires Computational Event Poisson Event Reconstruction

Algorithm Frame Load Distribution Like Clustering Error afFer

Vector (software) Error Avoidance Integration
Scan NO LOW POOR POOR POOR GOOD
Uniform-BF YES HIGH Very Good FAIR POOR GOOD
Uniform-F YES HIGH Very Good FAIR POOR GOOD
Uniform-WTA YES HIGH FAIR FAIR FAIR GOOD
Random YES FAIR FAIR GOOD FAIR GOOD
Random-SQ YES FAIR FAIR FAIR FAIR GOOD
Random-HW NO HIGH FAIR GOOD FAIR GOOD
Exhaustive NO LOW GOOD FAIR FAIR GOOD

is the reconstructed pixel value. After an infinite settling time,
this value would be given by

_AaQ !

I,(o0) = RO T (13)

e(fp—RC) -1
where the time constant RC is chosen to be such that the inte-
grator can settle approximately within a frame period Tt,5me. If
fpRC > 1 (which is true when neys > 1), then

I,(c0) = AQfp.

2) Boahen Diode-Capacitor Integrator: The previous inte-
grator requires a resistor R and capacitor C' to achieve a time
constant in the order of T§,me. In VLSI microchip technology
the size of the resistor and capacitor would be extremely large
for such low time constants [49]. Since an RC pair is required
for each pixel, this approach does not result practical. Boahen’s
diode-capacitor integrator, shown in Fig. 9(b), provides an inte-
gration value which is also linear with event frequency [19]

IO(OO) = A(AQ)fP

(where A is a constant gain factor controlled by the MOS source
voltage V), requiring also much less area in standard VLSI
technology [19].

3) Mortara PFM Demodulator: Another AER reconstruc-
tion mechanism reported by Mortara et al. is the pulse-fre-
quency-modulation (PFM) demodulator, shown in Fig. 9(c)
[10], [50]. This demodulator is more complex than the two
previous integrators. However, it has the nice feature of keeping
a constant interevent output, while the other two integrators
discharge slowly in the absence of events producing a rippled
output signal (that is, with extra noise). The steady-state output
signal for this circuit is given by

(14)

15)

15(00) = (Veet = Vy)C1 fp- (16)

We have behaviorally modeled the three previous reconstruction
integrator circuits in MATLAB, using ideal circuit component
descriptions that yield sets of finite difference equations [44].

First we used an ideal frame vector to compute the integrator
circuits outputs at time Tt me. By ideal frame vector we mean
the resulting ideal event distribution, in which each event can
be allocated where it should be theoretically and no collisions
occur (this limit situation corresponds to an ideal zero event
width Toyens = 0 and infinite number of slots (ngots = 00) for
a single frame. Under these circumstances the events of a single
pixel are equally spaced during the frame time. Testing the re-
sulting ideal frame vectors for our TIS and the previous three
integrator circuits we computed the errors between the original
images in the TIS and the reconstructed images at time 7fame-

It can be shown that for Boahen’s integrator the longest
settling time” occurs when ney¢ changes from maximum (K)
to minimum (1). In this case, the settling time is approximately
given by (K2(In3))/ fmax [44]. If we are assigning one event
per frame for the lowest activity then fiax = K/Thames
which gives a worst-case settling time of K(In3) X Tiame-
In this respect, Mortara’s integrator is more efficient because
its worst-case settling time (which happens for a transi-
tion from minimum (1) to maximum (K)) is approximately
2K(InK))/ fmax or 2In(K) X Trame [44]. In our case, we
would like to estimate the reconstruction error after a time
Ttames and how the different synthetic AER generation al-
gorithms degrade this error for the previous integrators with
respect to an ideal AER sequence.

Fig. 10(a) shows the reconstruction errors after a time 75 ame,
using ideal AER distributions (no event reallocations because of
collisions) for the different integrators, using the images of our
TIS and making the integrators settle from the initial conditions
set at maximum value. The y axis is the standard deviation, over
all the pixels of an image, of the pixel errors obtained as follows
(pixels with null values are excluded): Computing the difference
between the steady-state final value (for ¢ — o0) and the value
att = Tr.ame, normalized with respect to the steady-state value.

Now, doing exactly the same behavioral simulations, but
using the frame vectors generated by the different algorithms,
yields the results shown in Fig. 10(b) for the RC integrator, in

7Sett1ing times are defined, for a given resolution n,.s = K, as the time
needed for settling to an error equivalent to the resolution.
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Fig. 10(c) for Boahen’s integrator, and in Fig. 10(d) for Mor-
tara’s integrator. These figures show the standard deviation of
the pixel errors obtained as follows (pixels with null values are
excluded): Computing the relative difference between the pixel
value at £ = Txame When using the synthetic AER generation
method and when using the ideal distributions [as in Fig. 10(a)].
Comparing all three figures we may conclude that Mortara’s
integrator is slightly more sensitive to the distribution errors
of the different methods, than the other integrators. The less
sensitive one is Boahen’s. With respect to the algorithmic AER
generation methods, we may conclude that for low event loads
there is no significant difference between methods, while for
loads of 40% or higher it is better not to use the Uniform-WTA
nor the Scan algorithms. This is because the former discards
colliding events and the latter groups them in a nonnatural
way. Regarding reconstruction with integrating circuits, the
conclusion is that there is no significant difference between the
methods used for AER generation. On the other hand, we have
observed differences depending on the integrators used.
Table I summarizes the comparison results of this section.

IV. HARDWARE INTERFACE

All analyzes and results discussed so far have been performed
in software. However, our ultimate goal is to be able to pro-
vide hardware solutions for the synthetic AER generation in real
time. We have built a computer-to-AER interface that uses the
standard PCI computer bus. The interface includes the commu-
nication circuitry to the computer PCI bus, the transformation of
video streams from FBR to AER using the Random-HW Algo-
rithm, and the asynchronous AER communication to conven-
tional AER buses. This hardware interface has been coded in
VHDL, synthesized into a VirtexE 300 FPGA [52], and tested
on a Nallatech Ballyinx prototyping board [53]. The interface
can write AER events every Tuvent = 100 ns. Consequently,
this implies the restriction that N x M X K < Txame/Tevent =
40 ms/100 ns = 4 x 105. As a result, this hardware is able to

generate AER in real-time for a 64 X 64 pixels image (N =
M = 64) at a maximum rate of K = 255 events per pixel.
The hardware interface is capable of generating a peak rate of
107events/s.

Fig. 11 shows the architecture of the hardware interface. It
includes a PCI core, a 4 KB RAM for storing a 64 x 64 frame,
a control unit (CU), a 20-bit linear-feedback-shift-register
(LFSR), a delay-line-loop (DLL) for internal clock manage-
ment, a decoder and a set of control registers for managing the
PCI core and configuring the rest of components. The image of
a 64 x 64 pixels frame is transferred from the computer through
its PCI bus and the PCI core to the 4 KB RAM memory. The
20-bit LFSR is used for the pseudorandom number generation
and is the core of the Random-HW AER generation algorithm.
The 12 less significant bits are pixel addresses, while the 8 most
significant ones are compared against the pixel value. The CU,
clocked at 100 MHz, is the operation center. It manages the
RAM access, and this is done in two ways: a) Through the PCI
bus for loading frames to be converted into AER, and b) through
the 12 less significant bits of the LFSR to address a frame pixel
and decide whether or not to send an event with its address.
The LFSR works at a slower speed, using a clock which is
generated by the CU and triggered by the communication with
the AER receiver.

As an illustration of the hardware interface operation, a 64 x
64 pixel version of the image in Fig. 2(a) was fed to the hardware
interface and the generated events were captured. The image
was generated setting Ttame = 40 ms and K = 255. Events
were captured using a logic analyzer, and then reconstructed
off-line by a computer. The top row in Fig. 12 shows the result
of processing directly the image in Fig. 2(a), while the bottom
row corresponds to the same image after edge extraction using a
Sobel Filter [54]. Each image in Fig. 12 has been reconstructed
by using only the first fraction of events of the complete frame.
For example, in the top row left image we used only the first 1%
of the events of the whole frame to reconstruct the image. Also
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Fig. 12. Reconstructed images from events obtained from the Hardware AER output of Fig. 11. Top row: Intensity coded image. Bottom row: Same image after
Sobel Edge Extraction Filter. The numbers below each frame indicate: (1) Fraction of total frame events used for reconstruction, (2) absolute number of events

used, and (3) absolute time used for collecting this fraction of events.

shown are the resulting images of using only the first 5%, 14%,
35%, 50%, 70% events, and also all 100% events of the frame. In
this case, the complete 100% frame was represented by approx-
imately 524 Kevents (26% of AER bus limit: Two Mevents at
100 ns/event during 200 ms). As can be seen, it is possible to rec-
ognize the image before all events have been transmitted. This
is a very interesting property of AER:The most relevant pixels
(the one with higher intensity) are transmitted first, and conse-
quently present a given space-time correlation. For the bottom
row in Fig. 12, this observation is even more impressive. In this
case, we are transmitting the computed edges of the previous
image. The resulting AER coding will be much more sparse
than before. In this case, the complete 100% frame was repre-
sented by 147 Kevents (13% of AER bus limit: 1.1 Mevents at
100 ns/event during 110 ms). As can be seen, with only the first
0.07%-0.13% of events one can already recognize the silhou-
ette.

These figures illustrate how the Random-HW algorithm adds
artificial noise to the images, as a consequence of its random na-
ture (unless the original and reconstructed frames are perfectly
synchronized, as in the top right of Fig. 12; however, this situa-
tion is usually not met in practice).

In order to analyze how the hardware generated streams differ
from the ones generated directly by software, we compared both
according to the same criteria discussed in Section III. The re-
sults are shown in Fig. 13. Fig. 13(a) shows the differences
in distribution error, as defined by (7), for the events of the
top-right frame in Fig. 12 obtained from our hardware and repro-
ducing the same conditions in software. The negligible differ-
ences between the hardware and software event distributions are
caused by extra delays of the hardware not modeled in the soft-
ware. Note that, compared to what is shown in Fig. 7(b) for the
Random-HW method (with 128 x 128 images), there is no sig-
nificant difference. Fig. 13(b) summarizes the event clustering
analysis [as in Fig. 7(c)—(f)]. Continuous lines are for software
simulations, while dotted lines correspond to our hardware re-
sults. Crosses indicate the entropy as defined in (8)—(10). Circles
indicate the maximum values of the D, vector [see (11)]. Stars
show the values for the standard deviations of the D,. vector [see
(12)]. There is almost no appreciable difference between the SW

and HW events streams. Dots show the product of all the pre-
vious three characteristics.

In Fig. 13(c) we show the interspike time histograms. As may
be seen, the difference between the hardware (captured) and
software (simulated) histograms are quite minor.

V. CONCLUSION

Eight different methods for transforming a FBR video stream
to a rate-coded AER one are presented. The methods can be
grouped into four types: Scan, uniform, random, and exhaustive.
The methods have been implemented and tested in software,
and compared according the different criteria, and for different
AER traffic loads. Uniform methods result in the most precise
distributions but at the expense of costly computations. The
scan method is the fastest one but also the most imprecise. The
exhaustive method is a good compromise between speed and
precision. Random methods also show a good speed/precision
tradeoff, although they add more noise. Random methods yield
good Poisson distributed events. Scan and uniform methods
have a tendency to form clusters. All methods except three (the
scan method, one of the random methods, and the exhaustive
method), require the use of a large memory frame vector buffer.
The random method that does not require this buffer has been
implemented in hardware using a prototyping board with a
VirtexE 300 FPGA. The AER generated by this hardware was
captured using a logic analyzer. Thus, the hardware has been
tested against its corresponding software behavior, and no
significant differences were observed. Experimentally obtained
AER sequences were reconstructed off-line and are shown in
the paper. Future work will concentrate on nonrate-coded AER
generation.

APPENDIX

The FBR-to-AER algorithms perform a transformation from
pixel activity p to pixel event frequency f,. Let us assume pixel
activity is constrained to a normalized unity interval p € [0, 1].
‘We want the algorithms to map this activity interval into an event
frequency interval f, € [0, fimax|, and we want a linear transfor-
mation (f, = fmaxP) as a VLSI AER system [10]-[27] would
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Fig. 13.  Comparison of HW and SW generated streams. (a) Distribution error as defined in (7). (b) Event clustering analysis. (c) Poisson distribution analysis.

do it. For zero pixel activity the output frequency should be zero,
and no events are transmitted. However, in general we would
like to transmit events only if a minimum activity is reached.
Let us call fi,;, the frequency that corresponds to the minimum
nonzero pixel activity we want to transmit. Consequently, we
will impose a nonzero fi,;,. Under this constraint, the extreme
frequencies fuin and fiax will be related by a finite positive
proportionality constant K ( fuax = K fmin). Since we want to
do the FBR-AER transformations frame by frame, we need to

make fuin > 1/Ttame, or equivalently foin = a/Thame(a >
1), where Tiame is the time assigned to one frame. For the
limit situation @ = 1, one obtains f, = (Kp)/Thame. An-
other constraint is the following. Frame images proceed from
a conventional digital video system or computer. Consequently,
pixel intensities will take discrete values in the p € [0, 1] in-
terval. In case of 8-bit luminance coding, for example, the in-
terval would have a resolution of n,es = 28 = 256 levels.
The minimum increment in p is therefore Ap = 1/nes. Let



786

us now express the number of events to be transmitted during
the time interval of a frame T%.mc for a pixel of activity p.
This is the “number of events per frame” for this pixel nevs =
fpLame = Kp. Since p is of discrete nature with steps of size
Ap = 1/nyes, then neye will also be of discrete nature with
steps of size Aney = KAp = K /nyes. From a practical point
of view, it is desirable that the number of events per frame nys
to be generated is integer. Otherwise, one would have to gen-
erate different number of events for consecutive frames for the
same pixel activity.® This would require us to use some kind
of memory from frame to frame, which is a complication we
would like to avoid. We want to do the FBR-AER transforma-
tion frame by frame. Consequently, n.,+ will be integer and
so will be Aneys. Since n,es is integer, K will be integer as
well, and also a multiple of n,.s. Furthermore, if we decide to
make Aneys = 1, then K = n,.;. We have constrained our-
selves to this situation throughout the paper, independently of
the method used for the FBR-AER transformation. However,
we should keep in mind that this constraint is arbitrary (it is a
particular case of a = Aney¢ = 1). Consequently, in this paper,
we can consider that the pixels of the frames store the value
Nevf = KPp = Nyesp directly. Therefore

nres
fp=p7— (17)
b Tframo
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