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Short Papers
On an Efficient CAD Implementation of the Distance

Term in Pelgrom’s Mismatch Model

B. Linares-Barranco and T. Serrano-Gotarredona

Abstract—In 1989, Pelgrom et al. published a mismatch model for
MOS transistors, where the variation of parameter mismatch between two
identical transistors is given by two independent terms: a size-dependent
term and a distance-dependent term. Some CAD tools based on a nonphys-
ical interpretation of Pelgrom’s distance term result in excessive computa-
tionally expensive algorithms, which become nonviable even for circuits
with a reduced number of transistors. Furthermore, some researchers
are reporting new variations on the original nonphysically interpreted
algorithms, which may render false results. The purpose of this paper is
to clarify the physical interpretation of the distance term of Pelgrom et al.
and indicate how to model it efficiently in prospective CAD tools.

Index Terms—Analog design, mismatch gradient planes, mismatch
modeling, Pelgrom model, sigma-space analysis.

I. INTRODUCTION

The mismatch model proposed by Pelgrom et al. [1] models the
standard deviation in the mismatch of property P between two identi-
cal MOS transistors of width W and length L separated by a distance
D (from center to center) in the layout, as

σ2(∆P ) =
A2

P

WL
+ S2

P D2. (1)

This model was experimentally verified by Pelgrom by measuring
the mismatch on many dies, fabricated on many runs, and including
many identical transistors per die, as well as many transistor sizes
per die (see Fig. 2 in [1]). The model was verified for different
foundries and technologies. Theoretical derivations of this model (see
Appendix A) reveal that the two terms originate by two different
means. The size-dependent term is caused by random fluctuations
of material and technological properties of transistors. For example,
dopant concentrations along the wafers and dies can be considered
to be modeled by a constant term around which there exist random
fluctuations. These random fluctuations are averaged over a transistor
area WL contributing to a specific transistor electrical property (like
threshold voltage or beta). The larger the area, the smaller the impact
of the random fluctuations. Therefore, this random-induced mismatch
term decreases with the transistor area. On the other hand, the dis-
tance term in (1), which is size independent (common for all sizes),
is originated by gradients along the dies and wafers. For example,
dopant concentrations follow smooth systematic surfaces along the
wafers. Such surfaces are usually well known by IC manufacturers,
although rarely made public. For a particular die, the surface can be
approximated many times by a plane. Depending on the die position
within the wafer, a different gradient plane will result. Consequently,
in practice, this gradient plane has a random nature from die to die.
Since Pelgrom measured many dies, his model includes the random
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characterization of these random gradient planes. Layout techniques,
like common centroids, can eliminate the impact of gradient-induced
mismatch and consequently eliminate the distance term from (1).
However, layout techniques can never eliminate the random-induced
size-dependent term because of its purely random nature.

In the next section, we describe how one can model both terms
of the Pelgrom model in a circuit simulator. Then, in Section III, we
explain another implementation based on nonphysical interpretations.
In Section IV, we give some hints on how to further improve gradient-
induced mismatch in CAD tools, and finally, in Section V, we give our
conclusions.

II. IMPLEMENTING PELGROM’S MISMATCH MODEL

The random-induced size-dependent term is quite straightforward to
add in a circuit simulation tool. First, one needs to know the critical
transistor mismatch parameters, whose random fluctuations impact
transistor currents. They are usually a small number of parameters.
Pelgrom suggested two main ones (VT0 and β) and a secondary one
(γ) [1]. Bastos et al. added mobility degradation [2], [3], Serrano et al.
suggested a total of five relevant parameters [4], [5], and recent
models extending from weak to strong inversion have been proposed
with no more than five parameters [6]–[8]. For more sophisticated
transistor models like BSIM, about 16 parameters would be required
[9]. Consider a generic mismatch relevant parameter P . Let us assume
Pmean is the mean value predicted by the manufacturer. Usually, the
manufacturer also characterizes global interdie variations ∆Pglobal

common for all transistors in the same die, whose standard deviation
σ(∆Pglobal) would characterize variations from die to die. Finally,
a local term ∆Pi has to be added for each transistor in the circuit,
such that its standard deviation is characterized by (1). This local
mismatch term includes two components: a random size-dependent
component ∆Prand_i and a gradient-induced size-independent com-
ponent ∆Pgrad_i. The standard deviation of the random component is
given by σ(∆Prand_i) = AP /(

√
2WiLi). Here, Wi and Li are width

and length of transistor i. The factor 2 in the denominator accounts
for the fact that each transistor deviates from a nominal mismatchless
transistor. Parameters AP are provided by the manufacturer for the
mismatch relevant parameters. Sometimes, correlations between these
parameters are also characterized. In these cases, it is convenient to
reflect them when generating the random numbers ∆Prand_i for each
parameter [4].

Now, let us add the distance term of (1). Let us assume we have the
layout of our circuit and we know the central coordinates of each tran-
sistor i in the layout (xi, yi). Let us assume also that the manufacturer
provides parameter SP of the distance term for parameter P in (1).
Let us assume also that for each fabricated die, we can approximate
the gradient of P along the die by a plane P (x, y) = Ax + By + C,
where C = Pmean + ∆Pglobal, and A and B are random numbers.
Consider now two transistors i and j located at coordinates (xi, yi)
and (xj , yj) (see Fig. 1). The mismatch in property P caused by the
gradient plane of the die is ∆Pgrad_ij = A(xi − xj) + B(yi − yj).
Repeating this for many dies by generating random numbers A and B
for each die, we can compute σ2(∆Pgrad_ij) = σ2(A)(xi − xj)

2 +
σ2(B)(yi − yj)

2. Assuming symmetry of the random planes σ(A) =
σ(B) (no preferred directions) results in

σ2(∆Pgrad_ij) = σ2(A)
[
(xi − xj)

2 + (yi − yj)
2
]

= σ2(A)D2
ij

(2)

0278-0070/$25.00 © 2007 IEEE



IEEE TRANSACTIONS ON COMPUTER-AIDED DESIGN OF INTEGRATED CIRCUITS AND SYSTEMS, VOL. 26, NO. 8, AUGUST 2007 1535

Fig. 1. Illustration of random gradient planes for transistor property P that
gives rise to a distance-dependent mismatch term ∆P between the two transis-
tors at coordinates (xi, yi) and (xj , yj).

where Dij is the distance between transistors i and j. Comparing (2)
with the distance term in (1) reveals that

SP = σ(A) = σ(B). (3)

Consequently, if the manufacturer provides parameter SP , we can
generate the random gradient planes for each simulated die.

Summarizing, according to the 1989 findings of Pelgrom [1],
a CAD tool implementing all these mismatch components of a
MOS transistor should compute for each transistor i and for each
of its mismatch relevant parameters Pi a deviation including the
following terms: Pi = Pmean + ∆Pglobal + ∆Prand_i + ∆Pgrad_i.
To compute ∆Prand_i, a random number needs to be generated for
each transistor i. However, to compute ∆Pgrad_i, only two random
numbers need to be computed for all NMOS transistors (and another
two for all PMOS) in the same circuit, which are parameters A and B,
characterized by (3). With these two random numbers, and the central
coordinate of each transistor i, the term ∆Pgrad_i would be given by

∆Pgrad_i = Axi + Byi. (4)

Note that this way of interpreting Pelgrom’s distance term cancels
out gradient effects when using common-centroid layout techniques.
Assume a differential pair where each transistor is split into two.
Assume that transistors 1 and 4 in parallel form the first equivalent
transistor of the differential pair, and transistors 2 and 3 in parallel
form the second one. If they are laid out in a common-centroid config-
uration, their respective (central) coordinates can be written in the form
(x1, y1) = (−xd, yd), (x2, y2) = (xd, yd), (x3, y3) = (−xd,−yd),
and (x4, y4) = (xd,−yd). Applying (4) to this differential pair will re-
sult in a gradient-induced mismatch of ∆Pgrad_14−23 = (∆Pgrad_1 +
∆Pgrad_4) − (∆Pgrad_2 + ∆Pgrad_3) = 0, which is consistent with
Pelgrom’s distance term prediction for common-centroid layouts [1]
[see (19) in Appendix A].

III. NONPHYSICAL INTERPRETATION

Shortly after Pelgrom’s seminal paper was published, Michael et al.
developed a means to implement the distance term in (1) [9]–[11],
which is called sigma-space analysis or design. This methodology has
been further developed [12]. However, here, the distance term is not
considered to model the statistics of the possible gradient planes from
die to die. It is considered that within the same die, there is another
random component per transistor ∆Pd_i, such that when computing
the difference between two transistors separated by a distance Dij , the
standard deviation of this difference obeys

σ2
Dij = σ2(∆Pd_i − ∆Pd_j) = S2

P D2
ij . (5)

In principle, there could be many ways to generate random numbers
for an arbitrary number of transistors in a circuit satisfying (5). The
way proposed in [9] would be as follows. Consider that there are N
transistors. Then, for each of them, we compute

∆Pd_1 =0

∆Pd_2 =A22R2

∆Pd_3 =A32R2 + A33R3

. . .

∆Pd_N =

N∑
i=2

ANiRi (6)

where Ri is a random number normally distributed with zero mean and
standard deviation equal to 1. Coefficients Aji are computed by using
(5) for each transistor pair. Since there are a total of N(N − 1)/2
transistor pairs, there is a total of N(N − 1)/2 nonlinear quadratic
equations to solve with a total of N(N − 1)/2 parameters Aji in
(6). If (5) were linear, there would be one unique solution. However,
since they are nonlinear, we should expect many possible solutions.
The computational cost of solving these equations grows exponentially
with the number of transistors.

Obviously, the random gradient plane solution discussed in
Section II [see (4)] should be one of the solutions of the formulation
of (6), since both interpretations satisfy the distance statistics of (5).
However, the computational cost of (3) and (4) is much smaller than for
(5) and (6), and especially when there are a large number of transistors
in the circuit. Surprisingly, a more detailed analysis of the solutions of
(6) (see Appendix B) reveals that the gradient plane of Section II is the
only possible solution.

IV. FURTHER REFINEMENTS FOR IMPLEMENTING

GRADIENT-INDUCED MISMATCH IN A CAD TOOL

So far, we have seen that implementing Pelgrom’s distance-
dependent mismatch through a single random gradient plane or
through the formulation of (6) is equivalent, although the latter is much
more expensive computationally. Consequently, both formulations
model Pelgrom’s distance term by gradient planes. This is correct as
long as the gradients on the wafers have spatial constants much larger
than die sizes. However, this assumption cannot always be taken as
true. For example, in Fig. 2, we show measurements of 50 NMOS
transistors of size 5 × 5 µm2 spaced evenly over a distance of 2.6 mm
fabricated in a CMOS 0.35-µm process. We can very clearly see the
random mismatch component from transistor to transistor [which is the
one modeled by the size-dependent term in Pelgrom’s model of (1)]
and the gradient component. The central smooth curve in Fig. 2 was
computed by fitting the experimental data to a third-order polynomial.
Note that the gradient between transistors 20 to 50 fits very well a
linear plane. Also, transistors 1 to 20 could eventually be fitted by a
linear plane as well. However, all 50 transistors do not fit very well
into a single gradient plane. This means that for this technology, dies
over 2 mm (approximately) may have gradients that are not fitted
well by planes. Dies of 2-mm size are usually small dies. In modern
designs, it is very common to fabricate large dies of up to and over
1 cm2. However, it is also true that the analog part (and therefore,
more mismatch sensitive part of the die) is usually a small fraction.
Consequently, hopefully, this analog part could be modeled using
gradient planes. Nonetheless, in modern submicrometer technologies,
where mismatch effects are very strong, and digital circuits may
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Fig. 2. Measured dc current of 50 identical current sources over a distance of
2.6 mm in a CMOS 0.35-µm technology.

need to consider its effect, it might not be a good approximation to
consider a single gradient plane for the whole die. This would result in
too pessimistic gradient-induced mismatch predictions. In this case,
one might consider tiling the die into several gradient planes, with
continuous transitions from plane to plane. Another option, if one has
available wafer maps from the foundry, would be to place each die in
random positions within the wafer. However, foundries rarely provide
such data.

Another interesting observation regarding gradient mismatch mod-
eling is the following. Looking carefully at the steps of Pelgrom’s
model theoretical derivation (Appendix A), at some point [between
(16) and (17)], it is assumed that the spatial constant of the gradients
(Dw) is much larger than the transistor sizes and the intertransistor
distances. This is true if Dw is of the order of wafer size. However,
observations like the one in Fig. 2 reveal that this spatial constant
could be much less (at least in the order of a few millimeters). This
has two consequences. The first one is that if one estimates constant
SP in (1) from its theoretical expression [see (18)], one should not use
the wafer diameter for parameter Dw but rather a length in the order
of a few millimeters. The second consequence is that for transistor
sizes or intertransistor distances approaching Dw, one can no longer
assume the approximations after (16) in Pelgrom’s model theoretical
derivation. This implies that we may no longer expect to decouple the
random mismatch component from the gradient component into two
independent terms, as in (1).

V. CONCLUSION

We have shown that the distance-dependent term (S2
P D2) in

Pelgrom’s mismatch model is equivalent, to consider for each die a
random gradient plane Ax + By, such that σ(A) = σ(B) = SP . We
have shown that the solution of the formulation known as sigma-
space analysis for predicting this mismatch term in a CAD tool is
precisely this random plane. However, the mathematical formulation
used is extremely complex and grows exponentially with the number
of transistors, resulting in a nonviable solution for moderate and large
circuits. However, the random-plane physical interpretation of this
mismatch component results in a very simple mathematical formula-
tion, very easy to implement in a CAD tool, and without almost any
computing penalty. Hints on refining gradient-induced mismatch in a
CAD tool are also given.

Fig. 3. Position and coordinates of two transistors.

APPENDIX A
PELGROM MODEL DERIVATION

Fig. 3 shows two transistors of size W × L located at coordinates
(x1, y1) and (x2, y2), respectively. Let us define the position of the
pair as its middle point x12 = (x1 + x2)/2, y12 = (y1 + y2)/2. Let
us assume that property P of a transistor can be obtained by averaging
a certain density function P over its area

P1(x1, y1) =
1

WL

∫ ∫
area(x1,y1)

P(x′, y′)dx′dy′. (7)

The density function P(x′, y′) is assumed to reflect wafer gradients
as well as pure random components. Under these assumptions, the
mismatch in property P for the transistor pair located at (x12, y12)
is given by

∆P (x12, y12) =P1(x1, y1) − P2(x2, y2)

=
1

WL

∫ ∫
area(x1,y1)

P(x′, y′)dx′dy′

− 1

WL

∫ ∫
area(x2,y2)

P(x′, y′)dx′dy′

=
1

WL

∫ ∫
�2

G(x12 − x′, y12 − y′)P(x′, y′)dx′dy′

(8)

where G is “1” when (x, y) is inside the area of transistor cen-
tered at (x1, y1), G is “−1” for the area of transistor centered
at (x2, y2), and G is “0” elsewhere. In general, G is a geome-
try function which depends on the specific layout of the transis-
tor pair. Taking the Fourier transform in (8) yields ∆P (ωx, ωy) =
(1/(WL))G(ωx, ωy)P (ωx, ωy), where ∆P (ωx, ωy) is the Fourier
Transform of ∆P (x12, y12), G(ωx, ωy) is the one of G(x, y), and
P (ωx, ωy) is the one of P(x, y).

For the layout of Fig. 3, it can be shown that

G(ωx, ωy) =
sin

(
ωxL

2

)
ωx
2

sin
(

ωyW

2

)
ωy

2

(−2j) sin

(
ωxDx + ωyDy

2

)
.

(9)
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Fig. 4. Layout configuration for a transistor pair using common centroid.

Fig. 5. Wafer gradients.

If Dy = 0, it follows that

∣∣∣ 1

WL
G(ωx, ωy)

∣∣∣ =
sin

(
ωxL

2

)
ωxL

2

sin
(

ωyW

2

)
ωyW

2

{
2 sin

(
ωxDx

2

)}
.

(10)

For a pair of transistors in a common-centroid configuration, as shown
in Fig. 4, it would be
∣∣∣ 1

WL
G(ωx, ωy)

∣∣∣

=
sin

(
ωxL

2

)
ωxL

2

sin
(

ωyW

4

)
ωyW

4

{
2 sin

(
ωxDx

2

)
sin

(
ωyDy

2

)}
. (11)

Fig. 5 shows a wafer in which contour lines of constant property P
have been drawn. In the wafer, at coordinate (x12, y12), a pair of
transistors is drawn.

Assuming that when averaging ∆P (x12, y12) all over the wafer we
have ∆P |Wafer ≈ 0, we can write that

σ2(∆P ) =
1

Ω

∫ ∫
Ω

∆P 2(x12, y12)dx12dy12 (12)

where Ω is the area of the wafer. Applying Poisson’s theorem to (12)
results in

σ2(∆P ) =
1

4π2Ω

∞∫
−∞

dωx

−∞∫
−∞

dωy

∣∣∣ 1

WL
G(ωx, ωy)P (ωx, ωy)

∣∣∣2 .

(13)

Let us now make the following assumption: P (ωx, ωy) = Po +
W(ωx, ωy), where Po is a constant (frequency independent) repre-
sentative of white noise and W(ωx, ωy) is a wafer map component

Fig. 6. Approximate shape of frequency domain function W().

responsible for long-distance gradients along the wafer. The spatial
frequency content of function W(ωx, ωy) is for frequencies of the
order of D−1

w , where Dw is the wafer diameter. Therefore, function
W(ωx, ωy) can be assumed to have a shape of the type shown in Fig. 6,
and consequently, we can assume that

W(ωx, ωy) =

{
�P1, if

( −1
Dw

≤ ωx ≤ 1
Dw

)
,
( −1

Dw
≤ ωy ≤ 1

Dw

)
0, otherwise.

(14)

Therefore, (13) can be written as

σ2(∆P ) =
1

4π2ΩW 2L2

∞∫
−∞

dωx

∞∫
−∞

dωy|G|2|P0 + W|2

=
1

4π2ΩW 2L2

{
|P0|2Y1 + Y2

}
. (15)

Assuming a transistor pair as in Fig. 3, it would be

Y1 =

∞∫
−∞

dωxdωy|G|2 = 8π2WL

Y2 =

∞∫
−∞

dωx

∞∫
−∞

dωy|G|2
[
P ∗

0 W + P0W∗ + |W|2
]
. (16)

Since Dw � Dx,W,L, then |G(ωx, ωy)| ≈ ωxDxLW . Thus

Y2 ≈

1
Dw∫

− 1
Dw

dωx

1
Dw∫

− 1
Dw

dωyω2
xD2

xL2W 2
[
P ∗

0 W + P0W∗ + |W|2
]

=D2
xL2W 2k′

0

k′
0 =

1
Dw∫

− 1
Dw

dωx

1
Dw∫

− 1
Dw

dωyω2
x

[
P ∗

0 W + P0W∗ + |W|2
]

(17)

where P ∗
o W + PoW∗ + |W|2 ≈ P ∗

o P1 + PoP
∗
1 + |P1|2 = ko, and

Y2 = (4koD
2
xL2W 2)/(3D4

w). This results in

σ2(∆P ) =
2|P0|2
ΩWL

+
k0D

2
x

3π2ΩD4
w

=
A2

p

WL
+ S2

pD2
x,

A2
p =

2|P0|2
Ω

, S2
p =

k0

3π2ΩD4
w

. (18)
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For a common-centroid configuration, by changing the geometry
function, it can be shown that the result is

σ2(∆P ) =
2|Po|2
ΩWL

+
koD

2
xD2

y

36π2ΩD6
w

=
A2

P

WL
+ S2

P

D2
xD2

y

D2
w

. (19)

Note that the distance term has been reduced an amount of the order
(Dy/Dw)2, which is very small. Consequently, from a practical point
of view, the distance term can be considered to have disappeared.
Perfect gradient planes would cancel out exactly this distance term.
However, for the model in Fig. 6, the gradients are not always perfect
planes and might have a higher order curvature component. This is
why in (19), there results a residual distance term.

APPENDIX B

Let us demonstrate that the solution to the set of (5) and (6) is
exactly the random gradient plane described Section II. First, we will
compute the solution for a three-transistor circuit. Then, we will show
that if it is verified for a circuit with N − 1 transistors, it will be
verified also by a circuit with N transistors. Therefore, it is true for
any number of transistors.

Let us start with a circuit of three transistors and consider a generic
mismatch sensitive parameter P . According to the formulation of (6)

∆Pd_1 = 0 ∆Pd_2 = A22R2 ∆Pd_3 = A32R2 + A33R3.
(20)

Let us choose, without any loss of generality, a coordinate system such
that the coordinates of the three transistors are (0, 0), (x2, 0), and
(x3, y3), respectively. Applying (5) and (20) to these three transistors
results in

σ2
12 =S2

px2
2 = σ2(∆Pd_2 − ∆Pd_1) = A2

22

σ2
13 =S2

p

(
x2

3 + y2
3

)
= σ2(∆Pd_3 − ∆Pd_1) = A2

32 + A2
33

σ2
23 =S2

p

[
(x3 − x2)

2 + y2
3

]
= σ2(∆Pd_3 − ∆Pd_2)

= (A32 − A22)
2 + A2

33. (21)

The solutions of this set of equations are

A22 = s1Spx2 A32 = s1Spx3 A33 = s2Spy3 (22)

where s1 = ±1 and s2 = ±1. Consequently, there are four possible
solutions, depending on the signs s1 and s2 (parameter Sp is supposed
to be always positive). Substituting (22) into (20) results in

∆Pd_1 = 0 ∆Pd_2 = Ax2 ∆Pd_3 = Ax3 + By3 (23)

with A = s1SpR2 and B = s2SpR3. Note that (23) defines all ∆Pd_i

on a random plane defined by the two random parameters A and B,
such that σ(A) = σ(B) = Sp. Consequently, the distance mismatch
solution of (5) and (6) lies on a random plane for all transistors.

If we now add a fourth transistor at coordinates (x4, y4), with
∆Pd_4 = A42R2 + A43R3 + A44R4, we obtain the same solutions
than in (22) plus A42 = s1Spx4, A43 = s2Spy4, and A44 = 0.
Consequently, ∆Pd_1 = 0, ∆Pd_2 = Ax2, ∆Pd_3 = Ax3 + By3,
∆Pd_4 = Ax4 + By4, and again, the distance mismatch solution of
(5) and (6) lies on a random plane for all transistors. Let us now
consider a circuit with N − 1 transistors, and let us assume that the
solution also lies on a random plane. This means that

An2 = s1Spxn An3 = s2Spyn Ank = 0, k = 4, . . . , n − 1
(24)

for n = 4, . . . , N − 1. If we now consider the general case of a
circuit with N transistors, each at coordinate (xn, yn), then following
the formulation of (6), we have for the last transistor ∆Pd_N =∑N

j=2
(ANjRj). Following the formulation of (21) and assuming (24),

we have N − 1 equations for the parameters ANj of the N th transistor

σ2
1N =S2

p

(
x2

N +y2
N

)
= σ2(∆Pd_N −∆Pd_1)=

N∑
j=2

A2
Nj

σ2
2N =S2

p

[
(xN −x2)

2+y2
N

]
= σ2(∆Pd_N −∆Pd_2)

= (AN2 − A22)
2+

N∑
j=3

A2
Nj

σ2
kN =S2

p

[
(xN −xk)2+(yN −yk)2

]
= σ2(∆Pd_N −∆Pd_k)

= (AN2−Ak2)
2+(AN3−Ak3)

2+

N∑
j=4

A2
Nj . (25)

Note that the last equation in (25) can be written for k = 3, . . . , n − 1
because of the assumption in (24). Subtracting the first two equations
in (25) and using (24) yields AN2 = s1SpxN . Subtracting the third
equation from the first two ones results in two equations which
when solved using (24) yields AN3 = s2SpyN and

∑N

j=4
A2

Nj = 0.
Consequently, (24) is also satisfied for n = N , and again, the distance
mismatch solution of (5) and (6) lies on a random plane for all
transistors.
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