Noticias


Video promocional del proyecto SPIRS

SPIRS: Secure Platform for ICT Systems Rooted at the Silicon Manufacturing Process.

WEB SPIRS

Feria de la Ciencia 2022
El IMSE en la Feria de la Ciencia

Actividades presentadas por el Instituto de Microelectrónica de Sevilla en la 20ª Feria de la Ciencia.

LEER MÁS

Premio TAEE 2022
Premio al mejor artículo en el Congreso TAEE 2022

Los investigadores del IMSE Luis Camuñas y José Manuel de la Rosa han sido galardonados con el premio al mejor trabajo presentado en la XV edición del Congreso de Tecnología, Aprendizaje y Enseñanza de la Electrónica TAEE 2022, por el artículo 'Using Software-Defined Radio Learning Modules for Communication Systems'.

LEER MÁS

Háblame de CSIC
Digitalización eficiente para móviles basados en radio cognitiva

El investigador del IMSE José Manuel de la Rosa describe el trabajo que se está llevando a cabo en el IMSE por el grupo de investigación de convertidores sigma-delta, para diseñar chips que digitalicen señales de comunicaciones móviles empleando tecnología de radio cognitiva.

ESCUCHAR

Biometria
Biometría y su uso en transacciones electrónicas.

Entrevista a la investigadora del IMSE Rosario Arjona sobre la biometría y su uso en transacciones electrónicas en lugar de las tradicionales contraseñas.

ESCUCHAR

Defensa de Trabajos Fin de Máster
Defensa de Trabajos Fin de Máster

Relación de Trabajos Fin de Máster defendidos en el Instituto de Microelectrónica de Sevilla.
12 Julio 2022

LEER MÁS

EVENTOS Y NOTICIAS ANTERIORES

Empleo en el IMSE


Forma parte del
IMSE-CNM

Ofertas abiertas

LEER MÁS

Formación en el IMSE


- Doctorado
- Máster
- Grados
- Trabajos Fin de Grado
- Prácticas en Empresa

LEER MÁS

Publicaciones recientes


Machine Learning Approaches for Transformer Modeling
F. Passos, N. Lourenço, R. Martins, E. Roca, R. Castro-Lopez, N. Horta and F.V. Fernandez
Conference · Int. Conf. on Synthesis, Modeling, Analysis and Simulation Methods and Applications to Circuit Design SMACD 2022
resumen     

In this paper, several machine learning modeling methodologies are applied to accurately and efficiently model transformers, which are still a bottleneck in millimeter-wave circuit design. In order to compare the models, a statistical validation is performed against electromagnetic simulations using hundreds of passive structures. The presented models using machine learning techniques have proven to be accurate, efficient, and useful for a wide range of frequencies from (around) DC up to the millimeter-wave range (around 100GHz). As an application example, the models are used as a performance evaluator in a synthesis procedure to optimize a transformer and a balun.

Characterization and analysis of BTI and HCI effects in CMOS current mirrors
A. Santana-Andreo, P. Martin-Lloret, E. Roca, R. Castro-Lopez and F.V. Fernandez
Conference · Int. Conf. on Synthesis, Modeling, Analysis and Simulation Methods and Applications to Circuit Design SMACD 2022
resumen     

This paper presents experimental results on the aging-induced degradation of CMOS current mirrors fabricated in a 65-nm CMOS technology. A dedicated integrated circuit array with custom test structures allowing for accelerated aging tests is used for the characterization, including several geometries of simple current mirrors, in PMOS and NMOS versions. The bi-directional link between device degradation and bias conditions that comes into play during circuit aging, as well as the permanent degradation, are both reported and analysed.

High-level design of a novel PUF based on RTN
E. Camacho-Ruiz, R. Castro-Lopez, E. Roca and F.V. Fernandez
Conference · Int. Conf. on Synthesis, Modeling, Analysis and Simulation Methods and Applications to Circuit Design SMACD 2022
resumen     

Physically Unclonable Functions (PUFs) have emerged as an alternative to traditional Non-Volatile Memories in the field of lightweight hardware security. Recently, a novel PUF has been presented that uses the Random Telegraph Noise (RTN) phenomenon as the underlying source of entropy. While, in general, the nature of that entropy source largely dictates the quality of a PUF, little attention is often paid, however, to how the PUF architecture and its building blocks impact the PUF quality. This paper addresses the high-level design of the novel PUF to ascertain the extent of that impact and refine the building blocks specifications to mitigate it. Using high-level numerical and mixed-signal electrical simulations, the results demonstrate that it is very important to account for nonidealities in the PUF´s building blocks to prevent PUF quality degradation.

On the use of an RTN simulator to explore the quality trade-offs of a novel RTN-based PUF
E. Camacho-Ruiz, A. Santana-Andreo, R. Castro-Lopez, E. Roca and F.V. Fernandez
Conference · Int. Conf. on Synthesis, Modeling, Analysis and Simulation Methods and Applications to Circuit Design SMACD 2022
resumen     

Physical Unclonable Functions (PUFs) use variability as an entropy source from which to generate secure authentication and identification. While most silicon PUFs exploit the well-known Time-Zero Variability of CMOS technologies, the lack of efficient simulation tools for the Time- Dependent Variability (TDV) has left the potential benefits of this other kind of variability largely unexplored. However, recent advances in the field are allowing this exploration to begin. The objective of this paper is then to take a recently reported simulation tool to design a novel PUF that uses the Random Telegraph Noise (RTN), a TDV phenomenon, as the underlying entropy source. In the ensuing analysis, essential design guidelines are provided to best exploit such entropy source with factors like transistor biasing and sizing.

TODAS LAS PUBLICACIONES

Video institucional del IMSE


Qué hacemos en el IMSE


El área de especialización del Instituto es el diseño de circuitos integrados analógicos y de señal mixta en tecnología CMOS, así como su uso en diferentes contextos de aplicación tales como dispositivos biomédicos, comunicaciones inalámbricas, conversión de datos, sensores de visión inteligentes, ciberseguridad, computación neuromórfica y tecnología espacial.

La plantilla del IMSE-CNM está formada por unas cien personas, entre personal científico y de apoyo, que participan en el avance del conocimiento, la generación de diseños de alto nivel científico-técnico y la transferencia de tecnología.

LEER MÁS

Webs relacionadas con el IMSE


COMPARTIR