Noticias


Angel Rodriguez Premios Fama
El profesor de la US e investigador del IMSE Ángel Rodríguez Vázquez recibe el Premio Fama

La Universidad de Sevilla ha celebrado este martes 19 de marzo del 2024 el acto de entrega de los Premios Fama a la trayectoria investigadora.
22 Marzo 2024

LEER MÁS

Convocatoria Catedras PERTE Chip
Resuelta provisionalmente la convocatoria de Cátedras PERTE Chip

La Universidad de Sevilla consigue una Cátedra PERTE Chip (4,2M€), con la tercera mejor puntuación de 17 propuestas, con un proyecto liderado por profesores del IMSE y en cuyo equipo participan 39 investigadores de nuestro centro.
6 Marzo 2024

LEER MÁS

Anuncio Tesis Doctoral
Anuncio Defensa Pública de Tesis Doctoral

El acto de defensa público de la Tesis Doctoral de D. Eros Camacho Ruiz en el marco del programa de doctorado de Ciencias y Tecnologías Físicas de la Universidad de Sevilla se celebrará el 13 de marzo del 2024 a las 11:00 horas en el Instituto de Microelectrónica de Sevilla.

LEER MÁS

Premios FAMA
La US reconoce con los Premios FAMA a cinco de sus investigadores

El Prof. Ángel Rodríguez Vázquez ha sido galardonado con el Premio FAMA a la Trayectoria Investigadora y de Transferencia en el Área de Ingeniería y Arquitectura.
5 Marzo 2024

LEER MÁS

Redes neuronales oscilatorias
Publicación en el blog La Cuadratura del Círculo

Las redes neuronales oscilatorias representan un emocionante paso adelante en nuestro viaje hacia la comprensión y la emulación de la complejidad del cerebro humano, y su impacto promete ser profundo y duradero.
Juan Núñez Martínez
1 Febrero 2024

LEER MÁS

GoIT Panel IMSE
Actividad en el Proyecto GoIT

El próximo 14 de diciembre se realizará en el Salón de Grados del IMSE un panel sobre hardware de código abierto para construir componentes Root-of-Trust, como parte de nuestras actividades en el proyecto GoIT.
7 Diciembre 2023

LEER MÁS

EVENTOS Y NOTICIAS ANTERIORES

Nueva Directora del IMSE-CNM


La investigadora del IMSE Teresa Serrano Gotarredona ha sido nombrada nueva Directora del Instituto de Microelectrónica de Sevilla.

LEER MÁS

Formación en el IMSE


- Doctorado
- Máster
- Grados
- Trabajos Fin de Grado
- Prácticas en Empresa

LEER MÁS

Publicaciones recientes


A CMOS-compatible oscillation-based VO2 Ising machine solver
O. Maher, M. Jiménez, C. Delacour, N. Harnack, J. Núñez, M.J. Avedillo, B. Linares-Barranco, A. Todri-Sanial, G. Indiveri and S. Karg
Journal Paper · Nature Communications vol. 15, article 3334, 2024
NATURE    ISSN: 2041-1723
resumen      doi      

Phase-encoded oscillating neural networks offer compelling advantages over metal-oxide-semiconductor-based technology for tackling complex optimization problems, with promising potential for ultralow power consumption and exceptionally rapid computational performance. In this work, we investigate the ability of these networks to solve optimization problems belonging to the nondeterministic polynomial time complexity class using nanoscale vanadium-dioxide-based oscillators integrated onto a Silicon platform. Specifically, we demonstrate how the dynamic behavior of coupled vanadium dioxide devices can effectively solve combinatorial optimization problems, including Graph Coloring, Max-cut, and Max-3SAT problems. The electrical mappings of these problems are derived from the equivalent Ising Hamiltonian formulation to design circuits with up to nine crossbar vanadium dioxide oscillators. Using sub-harmonic injection locking techniques, we binarize the solution space provided by the oscillators and demonstrate that graphs with high connection density (μ > 0.4) converge more easily towards the optimal solution due to the small spectral radius of the problema’s equivalent adjacency matrix. Our findings indicate that these systems achieve stability within 25 oscillation cycles and exhibit power efficiency and potential for scaling that surpasses available commercial options and other technologies under study. These results pave the way for accelerated parallel computing enabled by large-scale networks of interconnected oscillators.

Cryptographic Security Through a Hardware Root of Trust
L.F. Rojas-Muñoz, S. Sánchez-Solano, M.C. Martínez-Rodríguez, E. Camacho-Ruiz, P. Navarro-Torrero, A. Karmakar, C. Fernández-García, E. Tena-Sánchez, F.E. Potestad-Ordóñez, A. Casado-Galán, P. Ortega-Castro, A.J. Acosta-Jiménez, C.J. Jiménez-Fernández and P. Brox
Conference · Applied Reconfigurable Computing. Architectures, Tools, and Applications (ARC), 2024
resumen      doi      

This work presents a novel approach to a Hardware Root-of-Trust that leverages System-on-Chip technology for the implementation of hardware cryptographic functions. Taking advantage of the processing power of a System-on-Chip, the solution established promotes hardware-based security solutions over software-only solutions. The proposed Root-of-Trust, developed around a Xilinx Zynq-7000 SoC device, integrates components based on cryptographic algorithms and physical phenomena. This innovative Root-of-Trust is tailored to support a spectrum of security tasks within cryptographic systems, including device-specific identifiers and keys, encryption and decryption, hashing, and signature generation and verification. The study adopts a unified design methodology, capitalizing on collaborative efforts to efficiently develop hardware primitives that significantly contribute to enhancing security in computing environments. Aligned with the advantages of reconfigurable hardware, this Hardware Root-of-Trust addresses the critical need for robust hardware-level security and introduces a set of countermeasures to fortify the design against potential threats.

A Small-Area 2nd-Order Adder-Less Continuous-Time ΔΣ Modulator With Pulse Shaping FIR DAC for Magnetic Sensing
M. Srivastava, A. Ferro, A. Sidun, P. Cantillon-Murphy, Daniel O’Hare, K. O’Donoghue and J.M. de la Rosa
Journal Paper · IEEE Open Journal of Circuits and Systems (Volume 5), 2024
IEEE    ISSN: 2644-1225
resumen      doi      

This work presents a small-area 2nd-order continuous-time ΔΣ Modulator (CTΔΣM) with a single low dropout regulator (LDO) serving as both the power supply for the CTΔΣM and reference voltage buffer. The CTΔΣM is used for digitising very low amplitude signals in applications such as magnetic tracking for image-guided and robotic surgery. A cascade of integrators in a feed-forward architecture implemented with an adder-less architecture has been proposed to minimise the silicon area. In addition, a novel continuous-time pulse-shaped digital-to-analog converter (CT-PS DAC) is proposed for excess loop delay (ELD) compensation to simplify the current drive requirements of the reference voltage buffer. This enables a single low-dropout (LDO) voltage regulator to generate both power supply and Vref for the DAC. The circuit has been designed in 65-nm CMOS technology, achieving a peak 82-dB SNDR and 91-dB DR within a signal bandwidth of 20 kHz and the CTΔΣM consumes 300 μW of power when clocked at 10.24 MHz. The CTΔΣM achieves a state-of-the-art area of 0.07 mm.

A Control-Bounded Quadrature Leapfrog ADC
H. Malmberg, F. Feyling and J.M. de la Rosa
Journal Paper · IEEE Transactions on Circuits and Systems I: Regular Papers, 2024
IEEE    ISSN: 1549-8328
resumen      doi      

In this paper, the design flexibility of the control-bounded analog-to-digital converter principle is demonstrated. A band-pass analog-to-digital converter is considered as an application and case study. We show how a low-pass control-bounded analog-to-digital converter can be translated into a band-pass version where the guaranteed stability, converter bandwidth, and signal-to-noise ratio are preserved while the center frequency for conversion can be positioned freely. The proposed converter is validated with behavioral simulations on several filter orders, center frequencies, and oversampling ratios. Additionally, we consider an op-amp circuit realization where the effects of first-order op-amp non-idealities are shown. Finally, robustness against component variations is demonstrated by Monte Carlo simulations.

TODAS LAS PUBLICACIONES

Video institucional del IMSE


Qué hacemos en el IMSE


El área de especialización del Instituto es el diseño de circuitos integrados analógicos y de señal mixta en tecnología CMOS, así como su uso en diferentes contextos de aplicación tales como dispositivos biomédicos, comunicaciones inalámbricas, conversión de datos, sensores de visión inteligentes, ciberseguridad, computación neuromórfica y tecnología espacial.

La plantilla del IMSE-CNM está formada por unas cien personas, entre personal científico y de apoyo, que participan en el avance del conocimiento, la generación de diseños de alto nivel científico-técnico y la transferencia de tecnología.

LEER MÁS

Webs relacionadas con el IMSE


COMPARTIR