Spanish National Research Council · University of Seville
 HOME
INTRANET
esp    ing
IMSE-CNM in Digital.CSIC


 


In all publications
Author: López Martínez, Juan M.
Year: Since 2002
All publications
An Experimentally-Validated Verilog-A SPAD Model Extracted from TCAD Simulation
J.M. López-Martínez, I. Vornicu, R. Carmona-Galán and A. Rodríguez-Vázquez
Conference - IEEE International Conference on Electronics Circuits and Systems ICECS 2018
[abstract]
Single-photon avalanche diodes (SPAD) are photodetectors with exceptional characteristics. This paper proposes a new approach to model them in Verilog-A HDL with the help of a powerful tool: TCAD simulation. Besides, to the best of our knowledge, this is first model to incorporate a trap-assisted tunneling mechanism, a cross-section temperature dependence of the traps, and the self-heating effect. Comparison with experimental data establishes the validity of the model.

Characterization of Electrical Crosstalk in 4T-APS Arrays using TCAD Simulations
J.M. López-Martínez, R. Carmona-Galán and A. Rodríguez-Vázquez
Conference - Conference on Ph.D Research in Microelectronics and Electronics PRIME 2017
[abstract]
TCAD simulations have been conducted on a CMOS image sensor in order to characterize the electrical component of the crosstalk between pixels through the study of the electric field distribution. The image sensor consists on a linear array of five pinned photodiodes (PPD) with their transmission gates, floating diffusion and reset transistors. The effect of the variations of the thickness of the epitaxial layer has been addressed as well. In fact, the depth of the boundary of the epitaxial layer affects quantum efficiency (QE) so a correlation with crosstalk has been identified.

TCAD Simulation of Electrical Crosstalk in 4T-Active Pixel Sensors
J.M. López-Martínez, R. Carmona-Galán, J. Fernández-Berni and A. Rodríguez-Vázquez
Conference - Workshop on the Architecture of Smart Cameras WASC 2017
[abstract]
CMOS image sensors (CIS) are widely used nowadays in consumer electronics as well as in high-end applications. This is mainly due to their advantages regarding low dark current and low noise characteristics of the pinned photodiode (PPD). Much effort has been put into better understanding key electrical properties of PPDs, like full well capacity, photodiode´s capacitance or pinning voltage. Another important source of sensitivity degradation is crosstalk (CTK). It has been assessed for CCDs and some CMOS devices. However, addressing CTK in CMOS 4T-APS pixels at the design phase is not easy, mainly due to the unavailability of CIS technology parameters.an additional problem is the computational cost of TCAD simulation; e.g., a five pixel linear array like the one shown in Fig. 1, already introduce long periods of computing due to the complexity of the structure. Crosstalk occurs when the charge generated by photon incident on a pixel are finally sensed by a neighboring pixel. CTK degrades performance, cutting down spatial resolution, reducing the overall sensitivity, degrading color separation, and increasing image noise. Crosstalk is defined as the percentage of the total charge generated by incident light that is diverted to non-illuminated pixels in the neighborhood. There are two components in CTK. Optical crosstalk is related to illumination, reflection, refraction and scattering of photons in the different layers of the material that cover the photodiode. This generates stray photons that are absorbed in the neighborhood. The second component is electrical, and it involves the diffusion of photo-generated carriers between adjacent devices. The characterization of electrical CTK in 4T-APS can be achieved using TCAD tools. Particularly, the relation between CKT and quantum efficiency (QE) can be explored and linked to the thickness of the epitaxial layer.

Scopus access Wok access